
How to use the omniORB2 LifeCycle Support

Duncan Grisby

4 December 1997

1 Introduction

omniORB2 provides support for LifeCycle operations on objects. It is important to
realise that it does not, however, provide an implementation of the CORBAservices
CosLifeCycle service. What it does provide is a means of moving object implemen-
tations from location to location, and deleting those implementations.

Using the LifeCycle support is very simple. The following sections explain the
example in src/examples/lifecycle.

2 LifeCycle Basics

The location at which an object is first created is called the object’s home location.
The home location is guaranteed to know the object’s current location—it directs
clients to the correct object wherever it may be. The home location does not act as
a proxy—once it has told a client where an object currently resides, the client does
not need to refer to the home location until the object moves again.

Moving an object from one location to another actually involves creating a new
object with the same interface and the same internal state as the one to be moved,
telling the home location about the new object, then deleting the original object.
Since it is impossible for the ORB to know what internal state is held by objects,
it is up to the implementation to create the new object. It usually does this using a
factory.

Since is is up to the implementation to copy objects, it is possible for an object
to be moved to one with a different implementation, as long as it still has the same
interface.

3 The Example

The example in examples/lifecycledefines an interface named EchoLag. It de-
clares the operation echoStringLag() which takes a string as its argument, and re-
turns the string it received on its previous call. So, on its first call it returns an un-
defined string, on its second call it returns the string it was given on the first call,
and so on.

1

There are three separate programs defined in the example: lcserver provides
an EchoLag object and an EchoLagFactory object; lcclient calls the functions of
EchoLag objects and can trigger location changes; lcremove calls an EchoLag’s
remove() operation.

4 IDL Definition

The file echolag.idl contains:

i n t e r f a c e o m n i L i f e C y c l e I n f o ;
i n t e r f a c e EchoLagFactory ;

i n t e r f a c e EchoLag
s t r i ng e ch o S t r i n g L a g (in s t r i ng s t r) ;
void move (in EchoLagFactory t h e re) ;
void remove () ;

;
i n t e r f a c e EchoLagFactory

EchoLag new EchoLag () ;
EchoLag copy EchoLag (in s t r i ng s t r ,

in o m n i L i f e C y c l e I n f o l i) ;

;

There is nothing spectacular about the EchoLag interface. EchoLagFactory has
two operations, one for creating brand new EchoLags, and the other for creating
copies of existing ones. The copy_EchoLag() operation takes an extra argument of
an omniLifeCycleInfo object reference; this reference is essential, but it is not neces-
sary to know what the interface’s definition is.

5 The Implementation Class

Here’s what EchoLag_i looks like:

class EchoLag i :
publ ic v i r t u a l lc sk EchoLag ,
publ ic v i r t u a l omniLC : : t h re a d Co n t ro l

pr i v a te :
char s ;

publ ic :
EchoLag i (const char i n i t i a l) ;
v i r t u a l ~EchoLag i () ;

v i r t u a l char e ch o S t r i n g L ag (const char s t r) ;
v i r t u a l void move (EchoLagFacto ry p t r t h e re) ;
v i r t u a l void remove () ;

;

2

As you can see, rather than deriving from the _sk_EchoLag skeleton class, it
derives from _lc_sk_EchoLag. This is where the extra LifeCycle control functions
come from. Don’t worry about the omniLC::_threadControl class for now.

6 Moving Objects

To perform a move, we need to use two new functions. Here is the code:

void
EchoLag i : : move (EchoLagFacto ry p t r t h e re)

omniLC : : ThreadLC zz (th i s) ;

/ / Create a copy of o u rse l ve s :
char p = CORBA: : s t r ing dup (s) ;
EchoLag var newEchoLag = t h e re copy EchoLag (p , g e t l i f e c y c l e ()) ;

/ / T e l l the system to do the move :
move (newEchoLag) ;

/ / Dispose of t h i s o b j e c t :
CORBA: : BOA: : getBOA () d ispose (th i s) ;

You may have been wondering where we were going to get the omniLifeCycle-
Info object reference required by copy_EchoLag() from. Well, you can see that there
is a new function called _get_lifecycle() which does just that. You still don’t need to
worry about what it does.

Once we have made a copy of our object, we just need to tell the system about
it—that is what the _move() function does.

The omniLC::ThreadLC bit will be explained later.

7 Removing Objects

Removing an object is simply a case of using the _remove() function:

void
EchoLag i : : remove ()

omniLC : : ThreadLC zz (th i s) ;
remove () ;

CORBA: : BOA: : getBOA () d ispose (th i s) ;

8 Implementing the Factory

The factory is just a normal CORBA object, so there is nothing unusual about its
class definition. However, since the object it is creating is a bit special, it needs to

3

be careful to do the right thing.

8.1 New Objects

Here’s the code for new_EchoLag():

EchoLag ptr
EchoLagFactory i : : new EchoLag ()

EchoLag i e lag = new EchoLag i (" F i r s t c a l l ") ;
e lag obj is ready (e lag boa ()) ;

re turn e lag th is () ;

It creates the new object in the expected way (defining the ‘undefined’ string
in the process). The vitally important bit is that it returns the result of _this() rather
than using _duplicate(). If you do this wrong, LifeCycle operations will not work.

8.2 Copied Objects

Implementing copy_EchoLag() is a little more complicated:

EchoLag ptr
EchoLagFactory i : : copy EchoLag (const char s t r ,

o m n i L i f e C y c l e I n f o p t r l i)
EchoLag i e lag = new EchoLag i (s t r) ;
e lag s e t l i f e c y c l e (l i) ;
e lag obj is ready (e lag boa ()) ;
re turn EchoLag : : d u p l i ca t e (e lag) ;

Here we create a new EchoLag with the string from the old one, then call an-
other new function, _set_lifecycle(). This tells the system that the object is a moved
version of another one. Finally, this time it is essential that _duplicate() is used for
the return value rather than _this(). Getting it wrong will confuse the system.

8.3 What’s going on?

When you create a brand new object, the system must create the things it uses to
track the object from location to location. It does this on the first call the _this().
The object reference returned by _this() is not really the implementation object, but
a wrapper object pretending to be it. It is this object which keeps track of the im-
plementation object’s current location, and lets clients know about it. Subsequent
calls to _this() return the wrapper object.

When you create a copy of an object, the call to _set_lifecycle() sets the object’s
home location wrapper object. So, calls to _this() return the reference of the wrap-
per object—just what we want if we are exporting an object reference from the im-
plementation, but just what we do not want when creating the object.

4

9 Concurrency Control

Since everything is happening in a multi-threaded environment, some concurrency
control is required to prevent inconsistent states arising while objects are copied
and moved. Such concurrency control is up to the implementation, but most im-
plementations will make use of the omniLC::_threadControl class provided.

The easiest way to use the facilities of the omniLC::_threadControl class is to
use the two helper classes, omniLC::ThreadOp and omniLC::ThreadLC. Normal oper-
ations create an omniLC::ThreadOp object on their stack; LifeCycle operations like
move() and remove() create omniLC::ThreadLC objects on their stack (as seen above).

10 Exceptions

The LifeCycle support adds no new exceptions, but it does make use of an obscure
standard one—it is common for operations to throw CORBA::TRANSIENT excep-
tions. This happens when an object moves from one non-home location to another:
each client keeps track of where it thinks the object currently resides; if the client
tries an operation invocation and the object does not exist at that location, it resets
its location to the object’s home location and throws a TRANSIENT exception.

By default, omniORB provides a TRANSIENT exception handler which keeps
retrying the operation with an ever-increasing delay between retries. You can pro-
vide your own exception handler with installTransientExceptionHandler().

11 Building LifeCycle Code

The omniORB2 IDL compiler, omniidl2, only creates the additional stub code re-
quired for LifeCycle support if given the ‘-l’ command-line switch. In addition to
this, it is necessary to link with an extra library, omniLC. If you are using the Omni
development environment, this is hidden away in the OMNIORB2_IDL_LC_FLAGS
and OMNIORB2_LC_LIB makefile variables as shown in this excerpt from dir.mk:

OMNIORB2 IDL += $ (OMNIORB2 IDL LC FLAGS)
. . .
$ (l c s e r v e r) : l c s e r v e r . o $ (CORBA STUB OBJS) $ (CORBA LIB DEPEND)

@(l i b s = " $ (CORBA LIB) $ (OMNIORB2 LC LIB) " ; $ (CXXExecutable))

12 Summary

In summary, these are the actions you need to take to use the LifeCycle support:

Make sure you generate the LifeCycle support code by using
OMNIORB2_IDL_LC_FLAGS.

Derive your implementation class from the _lc_sk_ skeleton.

5

In your object factory, use _this() when returning a brand new object.

When copying an object, call _set_lifecycle(), then use _duplicate() to return
the object.

To define your factory’s copy operation in IDL, declare the
omniLifeCycleInfo interface, but don’t worry about its definition.

To move an object create a copy of it, passing the result of _get_lifecycle() to
the factory. Then call _move().

To remove an object, call the _remove() function.

Implement concurrency control by deriving your implementation from
omniLC::_threadControl and using the omniLC::ThreadOp and
omniLC::ThreadLC classes.

Maybe provide a new CORBA::TRANSIENT exception handler.

Link your executables with the omniLC library.

13 How to use the examples

Run the lcserver program; it will output two stringified object references—the
first to an EchoLagFactory and the second to an EchoLag. Now run lcclientwith
two arguments, the first a string to echo, and the second the EchoLag reference out-
put by lcserver.

If all went well, lcclientwill output the string ‘First call’. Further calls
to lcclientwill output the strings you give it.

Now, start another copy of lcserver. Run lcclientwith three arguments—
a string to echo, the EchoLag object reference of the first server, and the EchoLag-
Factory reference of the second server.

The object should be moved from the first server to the second, with the stored
string maintained.

You can start more servers to experiment with moving objects from place to
place. If you run lcclientwith the ‘-ORBtraceLevel 15’ argument, you will
see the TRANSIENT exceptions being caught and handled.

When you get bored, run lcremove with the object reference of the original
EchoLag to remove it. Further attempts to use lcclient or lcremove with that
object will result in OBJECT_NOT_EXIST exceptions (or COMM_FAILUREs if you
exit the servers).

6

