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Chapter 1

Introduction

CVXOPT is a free software package for convex optimization based on the Python programming language. It can
be used with the interactive Python interpreter, on the command line by executing Python scripts, or integrated in
other software via Python extension modules. Its main purpose is to make the development of software for convex
optimization applications straightforward by building on Python’s extensive standard library and on the strengths of
Python as a high-level programming language.

Release 1.0 of CVXOPT includes routines for basic linear algebra calculations, interfaces to efficient libraries for
solving dense and sparse linear equations, convex optimization solvers written in Python, interfaces to a few other
optimization libraries, and a modeling tool for piecewise-linear convex optimization problems. These components are
organized in different modules.

cvxopt .base This module defines a Python type mat rix for storing and manipulating dense matrices, a Python
type spmatrix for storing and manipulating sparse matrices, routines for generating sparse dense matrices
(see section [2.7)), and routines for sparse matrix-vector and matrix-matrix multiplication (see chapters 2] and [6).

cvxopt.blas Interface to most of the double-precision real and complex BLAS (chapter 3)).

cvxopt.lapack Interface to the dense double-precision real and complex linear equation solvers and eigenvalue
routines from LAPACK (chapter [)).

cvxopt.fftw An optional interface to the discrete transform routines from FFTW (section [3)).
cvxopt .amd Interface to the approximate minimum degree ordering routine from AMD (chapter[7.1)).
cvxopt .umfpack Interface to the sparse LU solver from UMFPACK (section[7.2).

cvxopt .cholmod Interface to the sparse Cholesky solver from CHOLMOD (section[7.3).

cvxopt.solvers Convex optimization routines and optional interfaces to solvers from GLPK, MOSEK and
DSDP5 (chapters [§]and [9).

cvxopt .modeling Routines for specifying and solving linear programs and convex optimization problems with
piecewise-linear cost and constraint functions (chapter [I0).

cvxopt.info Defines a string version with the version number of the CVXOPT installation and a function
license () that prints the CVXOPT license.

cvxopt.printing Contains functions and parameters that control how matrices are formatted.

The modules are described in detail in this manual and in the on-line Python help facility pydoc. Several example
scripts are included in the distribution.






Chapter 2

Dense Matrices (cvxopt .base)

The cvxopt .base module defines two new Python types: matrix objects, used for dense matrix computations,
and spmatrix objects, used for sparse matrix computations. In this chapter we describe the dense mat rix object.
Sparse matrices are discussed in chapter|[6]

2.1 Creating Matrices

A matrix objectis created by calling the function matrix (). The arguments specify the values of the coefficients,
the dimensions, and the type (integer, double or complex) of the matrix.
matrix(x[, size[, tc]])

size is a tuple of length two with the matrix dimensions. The number of rows and/or the number of columns
can be zero.

tc stands for typecode. The possible values are “i’, “d’ and ’ z’, for integer, real (double) and complex
matrices, respectively.

x can be a number, a sequence of numbers, a dense or sparse matrix, a one- or two-dimensional NumPy array,
or a list of lists of matrices and numbers.

e If x is a number (Python integer, float or complex), a matrix is created with the dimensions
specified by size and with all the coefficients equal to x. The default value of size is (1, 1), and the
default value of tc is the type of x. If necessary, the type of x is converted (from integer to double when
used to create a matrix of type ’ d’, and from integer or double to complex when used to create a matrix
of type " z").

>>> from cvxopt.base import matrix

>>> A = matrix(1l, (1,4))

>>> print A

[ 1 1 1 1]

>>> A = matrix (1.0, (1,4))

>>> print A

[ 1.00e+00 1.00e+00 1.00e+00 1.00e+00]
>>> A = matrix (1+17)

>>> print A

[ 1.00e+00+3j1.00e+00]

e If x is a sequence of numbers (list, tuple, array array, xrange object, one-dimensional NumPy array,
...), then the numbers are interpreted as the coefficients of a matrix in column-major order. The length of
x must be equal to the product of size[0] and size[1]. If size is not specified, a matrix with one
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column is created. If t c is not specified, it is determined from the elements of x (and if that is impossible,
for example because x is an empty list, a value ’ 1’ is used). Type conversion takes place as for scalar x.

The following example shows several ways to define the same integer matrix.

>>> A = matrix ([0, 1, 2, 31, (2,2))

>>> A matrix ((0, 1, 2, 3), (2,2))

>>> A = matrix(xrange(4), (2,2))

>>> from array import array

>>> A = matrix(array(’i’, [0,1,2,3]1), (2,2))
>>> print A

[ 0 2]

[ 1 3]

If x is a dense or sparse matrix (a matrix or a spmatrix object), or a two-dimensional NumPy array
oftype "1/, " d’ or’ z’, then the coefficients of x are copied, in column-major order, to a new matrix of
the given size. The total number of elements in the new matrix (the product of size[0] and size[1])
must be the same as the product of the dimensions of x. If size is not specified, the dimensions of x are
used. The default value of t c is the type of x. Type conversion takes place when the type of x differs from
tc, in a similar way as for scalar x.

>>> A = matrix([l., 2., 3., 4., 5., 6.1, (2,3))
>>> print A
[ 1.00e+00 3.00e+00 5.00e+00]
[ 2.00e+00 4.00e+00 6.00e+00]
>>> B = matrix (A, (3,2))
>>> print B
[ 1.00e+00 4.00e+00]
[ 2.00e+00 5.00e+00]
[ 3.00e+00 6.00e+00]
>>> C = matrix (B, tc='z")
>>> print C
[ 1.00e+00-30.00e+00 4.00e+00-30.00e+00]
[ 2.00e+00-30.00e+00 5.00e+00-30.00e+00]
[ 3.00e+00-30.00e+00 6.00e+00-30.00e+00]
>>> from numpy import array
>>> x = array([[1., 2., 3.1, [4., 5., 6.11)
>>> x
array ([[ 1. 2. 3.]
[ 4. 5. 6.11)
>>> print matrix(x)
[ 1.00e+00 2.00e+00 3.00e+00]
[ 4.00e+00 5.00e+00 6.00e+00]

If x is a list of lists of matrices (mat rix or spmatrix objects) or numbers (Python integer, float
or complex), then each element of x is interpreted as a block-column stored in column-major order. If
size is not specified, the block-columns are juxtaposed to obtain a matrix with 1en (x) block-columns.
If size is specified, then the matrix with 1en (x) block-columns is resized by copying its elements in
column-major order into a matrix of the dimensions given by size. If t ¢ is not specified, it is determined
from the elements of x (and if that is impossible, for example because x is a list of empty lists, a value
"1’ is used). The same rules for type conversion apply as for scalar x.

>>> print matrix([[1., 2.1, [3., 4.1, [5., 6.11)
[ 1.00e+00 3.00e+00 5.00e+00]
[ 2.00e+00 4.00e+00 6.00e+00]



>>> Al = matrix([1, 2], (2,1))

>>> Bl = matrix([6, 7, 8, 9, 10, 111, (2,3))

>>> B2 = matrix([12, 13, 14, 15, 16, 171, (2,3))
>>> B3 = matrix ([18, 19, 20], (1,3))

>>> C = matrix([[Al, 3.0, 4.0, 5.0], [B1, B2, B3]])

>>> print C

[ 1.00e+00 6.00e+00 8.00e+00 1.00e+01]
[ 2.00e+00 7.00e+00 9.00e+00 1.10e+01]
[ 3.00e+00 1.20e+01 1.40e+01 1.60e+01]
[ 4.00e+00 1.30e+01 1.50e+01 1.70e+01]
[ 5.00e+00 1.80e+01 1.90e+01 2.00e+01]

A matrix with a single block-column can be represented by a single list (i.e., when the length of x is one,
it can be replaced with x [01]).

>>> D = matrix ([B1l, B2, B3])
>>> print D

[ 6 8 10]
[ 7 9 11]
[ 12 14 16]
[ 13 15 17]
[ 18 19 20]

2.2 Attributes and Methods

A matrix has the following attributes.

size
A tuple with the dimensions of the matrix. The size of the matrix can be changed by altering this attribute, as
long as the number of elements in the matrix remains unchanged.
typecode
A char,either 1’,7d’,or ' z’, for integer, real and complex matrices, respectively. A read-only attribute.
trans()
Returns the transpose of the matrix as a new matrix. One can also use A. T instead of A.trans ().
ctrans()
Returns the conjugate transpose of the matrix as a new matrix. One can also use A . H instead of A. ctrans ().
real()
For complex matrices, returns the real part as a real matrix. For integer and real matrices, returns a copy of the
matrix.
imag()

For complex matrices, returns the imaginary part as a real matrix. For integer and real matrices, returns an
integer or real zero matrix.

__array _struct__

A PyCObject implementing the NumPy array interface (see section [2.8|for details).
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tofile(f)

Writes the elements of the matrix in column-major order to a binary file £.
fromfile(£)

Reads the contents of a binary file f into the matrix object.
The last two methods are illustrated in the following example.

>>> from cvxopt.base import matrix
>>> A = matrix([[1.,2.,3.1, [4.,5.,6.
>>> print A
.00e+00

11

4.00e+00]
.00e+00 5.00e+00]
.00e+00 6.00e+00]

>>> f = open('mat.bin’,’w’)
A.tofile(f)

f.close ()

B = matrix (0.0, (2,3))
f = open('mat.bin’,’r’)
B.fromfile (f)

>>> f.close()

print B
.00e+00
.00e+00

3.00e+00
4.00e+00

5.00e+00]
6.00e+00]

Matrices can also be written to or read from files using the dump () and 1oad () functions in the pickle module.

2.3 Arithmetic Operations

The following table lists the arithmetic operations defined for dense matrices. In this table A and B are dense matrices
with compatible dimensions, c is a scalar (a Python number or a dense 1 by 1 matrix), and d is a Python number.

Unary plus/minus +A, —A

Addition

A+B, A+c, c+A

Subtraction

A-B,A-c,Cc—A

Matrix multiplication

AxB

Scalar multiplication and division

c*A,Axc,A/c

Remainder after division

o
sC

Elementwise exponentiation

Ax*d

If ¢ in the expressions A+c, c+A, A—c, c—A is a number, then it is interpreted as a matrix with the same dimensions
as A, type given by the type of c, and all entries equal to c. If c is a 1 by 1 matrix and A is not 1 by 1, then c is
interpreted as a matrix with the same size of A and all entries equal to c [0].

Postmultiplying a matrix with a number ¢ means the same as premultiplying, i.e., scalar multiplication. Dividing a
matrix by ¢ means dividing all entries by c. If c is a 1 by 1 matrix and the product c+A or A*c cannot be interpreted
as a matrix-matrix product, then it is interpreted as ¢ [0] xA. The division A/ c and remainder A%c with c a 1 by 1
matrix are always interpreted as A/c [0], resp., A%c [0].

If one of the operands in the arithmetic operations is integer (a scalar integer or a matrix of type / 1’ ) and the other
operand is double (a scalar f1oat or a matrix of type ’ d’ ), then the integer operand is converted to double, and the
result is a matrix of type ’ d’. If one of the operands is integer or double, and the other operand is complex (a scalar
complex or a matrix of type ' z’ ), then the first operand is converted to complex, and the result is a matrix of type

'z’
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The result of A+ +d is a complex matrix if A or d are complex, and real otherwise.
Note that Python rounds the result of an integer division towards minus infinity.
The following in-place operations are also defined, but only if they do not change the type of the matrix A:

In-place addition A+=B, A+=c
In-place subtraction A-=B, A-=cC
In-place scalar multiplication and division | Ax=c, A/=c
In-place remainder A%=c

For example, if A has type ’ i’, then A+=B is allowed if B has type ’ i’. It is not allowed if B has type ’ d’ or
" z’ because the addition A+B results in a matrix of type ’ d’ or ’ z” and therefore cannot be assigned to A without
changing its type.

In-place matrix-matrix products are not allowed. (Except when c is a 1 by 1 matrix, in which case Ax=c is interpreted
as the scalar product Ax=c[01].)

It is important to know when a matrix operation creates a new object. The following rules apply.

e A simple assignment ("A = B”) is given the standard Python interpretation, i.e., it assigns to the variable A a
reference (or pointer) to the object referenced by B.

>>> B = matrix ([[1.,2.], [3.,4.]1)

>>> print B

[ 1.00e+00 3.00e+00]

[ 2.00e+00 4.00e+00]

>>> A = B

>>> A[0,0] = -1

>>> print B # modifying A[0,0] also modified B[0,0]
[-1.00e+00 3.00e+00]

[ 2.00e+00 4.00e+00]

e The regular (i.e., not in-place) arithmetic operations always return new objects. Hence A = +B” is equivalent
to”A = matrix (B)”.

>>> B = matrix([[1.,2.], [3.,4.]11)

>>> A = +B

>>> A[0,0] = -1

>>> print B # modifying A[0,0] does not modify B[0,0]
[ 1.00e+00 3.00e+00]

[ 2.00e+00 4.00e+00]

e The in-place operations directly modify the coefficients of the existing matrix object and do not create a new
object.

>>> B = matrix([[1.,2.], [3.,4.11)

>>> A =B

>>> A %= 2

>>> print B # in-place operation also changed B

[ 2.00e+00 6.00e+00]

[ 4.00e+00 8.00e+00]

>>> A = 2%A

>>> print B # regular operation creates a new A, so does not change B
[ 2.00e+00 6.00e+00]

[ 4.00e+00 8.00e+00]
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2.4 Indexing and Slicing

Matrices can be indexed using one or two arguments. In single-argument indexing of a matrix A, the index runs from
—len (A) to len (A) -1, and is interpreted as an index in the one-dimensional array of coefficients of A in column-
major order. Negative indices have the standard Python interpretation: for negative k, A[k] is the same element as

A[len (A) +k].
Four different types of one-argument indexing are implemented.

1.
2.

Thus, single-argument indexing returns a scalar (if the index is an integer), or a matrix with one column. This is
consistent with the interpretation that single-argument indexing accesses the matrix in column-major order.

Note that an index list or an index matrix are equivalent, but they are both useful, especially when we perform opera-
tions on index sets. For example, if T and J are lists then I+J is the concatenated list, and 2+ I is I repeated twice. If
they are matrices, these operations are interpreted as arithmetic operations. For large index sets, indexing with integer

The index can be a single integer. This returns a number, e.g., A [0] is the first element of A.

The index can be an integer matrix. This returns a column matrix: the command "A [matrix ([0,1,2,31)1”
returns the 4 by 1 matrix consisting of the first four elements of A. The size of the index matrix is ignored:

"Almatrix([0,1,2,3]1, (2,2))]1” returns the same 4 by 1 matrix.

The index can be a list of integers. This returns a column matrix, e.g., A[ [0, 1,2, 31] is the 4 by 1 matrix

consisting of elements 0, 1, 2, 3 of A.

The index can be a Python slice. This returns a matrix with one column (possibly O by 1, or 1 by 1). For
example, A[::2] is the column matrix defined by taking every other element of A, stored in column-major

order. A[0:0] is a matrix with size (0,1).

matrices is also faster than indexing with lists.
The following example illustrates one-argument indexing.

>>>
>>>
>>>

>>>

W kENDODNO

>>>
>>>

from cvxopt.base import matrix
A = matrix(range (16), (4,4

print A[I]

.00e+00]
.00e+00]
.00e+01]
.50e+01]

.00e+00
.00e+00
.00e+01
.10e+01

print A

.00e+00 4.00e+00 8
.00e+00 5.00e+00 9
.00e+00 6.00e+00 1
.00e+00 7.00e+00 1

A[4]

I = matrix ([0, 5, 10, 15])

I =10,2]; J=1[1,3]

print A[2xI+J] # duplicate I and append J
.00e+00]
.00e+00]
.00e+00]
.00e+00]
.00e+00]
.00e+00]

I = matrix ([0, 2]);

print A[2xI+J] # multiply I by 2 and add J

J =

), "dn)

.20e+01]
.30e+01]
.40e+01]
.50e+01]

e

# the diagonal

matrix ([1,

12

31)



[ 1.00e+00]
[ 7.00e+00]
>>> print A[4::4] # get every fourth element skipping the first four
.00e+00]
.00e+00]
.20e+01]

(SO Ot

[
[
[

In two-argument indexing the arguments can be any combinations of the four types listed above. The first argument
indexes the rows of the matrix and the second argument indexes the columns. If both indices are scalars, then a scalar
is returned. In all other cases, a matrix is returned. We continue the example.

>>> print A[:,1]
4.00e+00]
[ 5.00e+00]
6.00e+00]
7.00e+00]
>>> J = matrix ([0, 2])
>>> print A[J,J]
[ 0.00e+00 8.00e+00]
[ 2.00e+00 1.00e+01]
>>> print A[:2, -2:]
[ 8.00e+00 1.20e+01]
[ 9.00e+00 1.30e+01]

Expressions of the form A[I] or A[I, J] can also appear on the lefthand side of an assignment. The righthand side
must be a scalar (i.e., a number or a 1 by 1 dense matrix), a sequence of numbers, or a dense or sparse matrix. If the
righthand side is a scalar, it is interpreted as a matrix with identical entries and the dimensions of the lefthand side. If
the righthand side is a sequence of numbers (list, tuple, array array, xrange object, ...) its values are interpreted as
the coefficients of the lefthand side in column-major order. If the righthand side is a matrix (matrix or spmatrix),
it must have the same size as the lefthand side. Sparse matrices are converted to dense in the assignment.

Indexed assignments are only allowed if they do not change the type of the matrix. For example, if A is a matrix with
type ' d’,then A[I] = Bis only permitted if B is an integer, a float, or amatrix of type " 1’ or ' d’. If A is
an integer matrix, then A[I] = B is only permitted if B is an integer or an integer matrix.

The following example illlustrates indexed assignment.

>>> A = matrix(range (16), (4,4))
>>> Af[::2,::2] = matrix([[-1, -2], [-3, -4]1])
>>> print A

[ -1 4 -3 12]
[ 1 5 9 13]
[ -2 6 -4 14]
[ 3 7 11 15]

>>> A[::5] += 1
>>> print A

[ O 4 -3 12
[ 1 6 9 13
[ -2 6 -3 14
[ 3 7 11 16

>>> A[0,:] = -1, 1, -1, 1
>>> print A

[ -1 1 -1 1]

[ 1 6 9 13]

[ -2 6 -3 14]

[ 3 7 11 16]
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>>> A[2:,2:] = xrange (4)
>>> print A

[ -1 1 -1 1]
[ 1 6 9 13]
[ -2 6 0 2]
[ 3 7 1 3]

2.5 Built-in Functions

Many Python built-in functions and operations can be used with matrix arguments. We list some useful examples.

len(x)
Returns the product of the number of rows and the number of columns.

bool([x])

Returns False if x is empty (i.e., len (x) is zero) and True otherwise.

max(x)
Returns the maximum element of x.
min(x)
Returns the minimum element of x.
abs(x)
Returns a matrix with the absolute values of the elements of x.
sum(x[, start=0.0])

Returns the sum of start and the elements of x.

Matrices can be used as arguments to the 1ist (), tuple (), zip(),map(),and filter () functions described
in section 2.1 of the Python Library Reference. 1ist (A) and tuple (A) construct a list, respectively a tuple, from
the elements of A. zip (A, B, . . .) returns a list of tuples, with the ith tuple containing the ith elements of A, B, ....

>>> from cvxopt.base import matrix

>>> A matrix([[-11., -5., -20.]1, [-6.
>>> B = matrix(range(6), (3,2))

>>> list (A)

[-11.0, -5.0, -20.0, -6.0, 0.0, 7.0]
>>> tuple (B)

(0, 1, 2, 3, 4, 5)

>>> zip (A, B)

[(-11.0, O), (=-5.0, 1), (-20.0, 2), (-6.0, 3), (0.0, 4),

map (£, A), where f is a function and A is a matrix, returns a list constructed by applying f to each element of A.

Multiple arguments can be provided, for example, as in map (£, A, B), if £ is a function with two arguments.

>>> A = matrix([[5, -4, 10, -71, [-1, -5, -6, 21, I[6,
>>> B
>>> print matrix (map(max, A, B), (4,4))

[ 5 -1 6 -1]
[ -4 -5 1 2]
[ 10 1 9 -3]
[ -7 2 12 -6]
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filter (f,A), where £ is a function and A is a matrix, returns a list containing the elements of A for which £ is
true.

>>> filter (lambda x: x%2, A) # list of odd elements in A

(5, -7, -1, -5, 1, 5, -1, -3, -7]

>>> filter(lambda x: -2 < x < 3, A) # list of elements between -2 and 3
(-1, 2, 1, 2, -1, 2]

It is also possible to iterate over matrix elements, as illustrated in the following example.

>>> A = matrix ([[5, -31, [9, 1111)
>>> for x in A: print max(x,0)

o O O -

11
>>> [max (x,0) for x in A]
(5, 0, 9, 11]

The expression ”x in A” returns True if an element of A is equal to x and False otherwise.

2.6 Other Matrix Functions

The following functions of dense matrices can be imported from cvxopt .base.
sqrt(x)

The elementwise square root of x. The result is returned as a real matrix if x is an integer or real matrix and as a
complex matrix if x is a complex matrix. Raises an exception when x is an integer or real matrix with negative
elements.

sin(x)

The sine function applied elementwise to x. The result is returned as a real matrix if x is an integer or real
matrix and as a complex matrix otherwise.

cos(x)

The cosine function applied elementwise to x. The result is returned as a real matrix if x is an integer or real
matrix and as a complex matrix otherwise.

exp(x)

The exponential function applied elementwise to x. The result is returned as a real matrix if x is an integer or
real matrix and as a complex matrix otherwise.

log(x)

The natural logarithm applied elementwise to x. The result is returned as a real matrix if x is an integer or
real matrix and as a complex matrix otherwise. Raises an exception when x is an integer or real matrix with
nonnegative elements, or a complex matrix with zero elements.

mul(x, v)
The elementwise product of x and y. The two matrices must have the same size and type.
div(x, y)

The elementwise division of x by y. The two matrices must have the same size and type.
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2.7 Randomly Generated Matrices

The cvxopt .base module provides two functions normal () and uniform() for generating randomly dis-
tributed matrices. The default installation relies on the pseudo-random number generators in the Python standard
library random. Alternatively, the random number generators in the GNU Scientific Library (GSLﬂ can be used, if
this option is selected during the installation of CVXOPT. The random matrix functions based on GSL are faster than
the default functions based on the random module.

normal(nrows[, ncols[, mean[, std]]])

Returns a type * d’ matrix of size nrows by ncols with elements chosen from a normal distribution with mean
mean and standard deviation std. The default values for the optional arguments are ncols=1, mean=0.0,
std=1.0.

uniform(nrows[, ncols[, a[, bl

Returns a type ’ d’ matrix of size nrows by ncols matrix with elements uniformly distributed between a and
b. The default values for the optional arguments are ncols=1, a=0.0, b=1.0.

setseed([value])

Sets the state of the random number generator. value must be an integer. If value is absent or equal to zero,
the value is taken from the system clock. If the Python random number generators are used, this is equivalent to
random. seed (value).

getseed()

Returns the current state of the random number generator. This function is only available if the GSL random
number generators are installed. (The state of the random number generators in the Python random module
can be managed via the functions random.getstate () and random. setstate ().)

2.8 The NumPy Array Interface

The CVXOPT matrix object is compatible with the NumPy Array Interface, which allows Python objects that
represent multidimensional arrays to exchange data using information stored in the attribute __array_struct._..
See also:

e NumPy Array Interface Speciﬁcatioﬂ
e NumPy home pag

As already mentioned in section[2.] a two-dimensional array object (for example, a NumPy matrix or two-dimensional
array) can be converted to a CVXOPT matrix object by using the matrix () constructor. Conversely, CVXOPT
matrices can be used as array-like objects in NumPy. The following example illustrates the compatibility of CVXOPT
matrices and NumPy arrays.

>>> from cvxopt.base import matrix
>>> a = matrix(range(6), (2,3), 'd")
>>> print a

[ 0.00e+00 2.00e+00 4.00e+00]

[ 1.00e+00 3.00e+00 5.00e+00]

>>> from numpy import array

>>> b = array(a)

http://www.gnu.org/software/gsl
Zhttp://numpy.scipy.org/array_interface.shtml
3http://numpy.scipy.org
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>>> b

array ([[ 0. 2. 4.]

[ 1 3 5.11)
>>> a*xb
array ([[ O. 4. 16.]

[ 1. 9. 25.11)

>>> from numpy import mat
>>> ¢ = mat (a)
>>> ¢

3., 13., 23.1,
5., 23., 41.11)

matrix ([[ O 2. 4.]
[ 1 3. 5.11)
>>> a.T x cC
matrix ([[ 1., 3., 5.1,
[
[

In the first product, a «b is interpreted as NumPy array multiplication, i.e., componentwise multiplication. The second
product a . T*c is interpreted as NumPy matrix multiplication, i.e., standard matrix multiplication.
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Chapter 3

The BLAS Interface (cvxopt .blas)

The cvxopt .blas module provides an interface to the double-precision real and complex Basic Linear Algebra
Subprograms (BLAS). The names and calling sequences of the Python functions in the interface closely match the
corresponding Fortran BLAS routines (described in the references below) and their functionality is exactly the same.
Many of the operations performed by the BLAS routines can be implemented in a more straightforward way by using
the matrix arithmetic of section [2.3] combined with the slicing and indexing of section 2.4 As an example, "C =
A+B” gives the same result as the BLAS call "gemm (2, B, C) ”. The BLAS interface offers two advantages. First,
some of the functions it includes are not easily implemented using the basic matrix arithmetic. For example, BLAS
includes functions that efficiently exploit symmetry or triangular matrix structure. Second, there is a performance dif-
ference that can be significant for large matrices. Although our implementation of the basic matrix arithmetic makes
internal calls to BLAS, it also often requires creating temporary matrices to store intermediate results. The BLAS
functions on the other hand always operate directly on their matrix arguments and never require any copying to tem-
porary matrices. Thus they can be viewed as generalizations of the in-place matrix addition and scalar multiplication
of section [2.3|to more complicated operations.

See also:

e C. L. Lawson, R. J. Hanson, D. R. Kincaid, F. T. Krogh, Basic Linear Algebra Subprograms for Fortran Use,
ACM Transactions on Mathematical Software, 5(3), 309-323, 1975.

e J. J. Dongarra, J. Du Croz, S. Hammarling, R. J. Hanson, An Extended Set of Fortran Basic Linear Algebra
Subprograms, ACM Transactions on Mathematical Software, 14(1), 1-17, 1988.

e J.J. Dongarra, J. Du Croz, S. Hammarling, I. Duff, A Set of Level 3 Basic Linear Algebra Subprograms, ACM
Transactions on Mathematical Software, 16(1), 1-17, 1990.

3.1 Matrix Classes

The BLAS exploit several types of matrix structure: symmetric, Hermitian, triangular, and banded. We represent all
these matrix classes by dense real or complex mat rix objects, with additional arguments that specify the structure.

Vector A real or complex n-vector is represented by amatrix of type * d’ or ’ z’ and length n, with the entries of
the vector stored in column-major order.

General matrix A general real or complex m by n matrix is represented by a real or complex matrix of size (m,
n).

Symmetric matrix A real or complex symmetric matrix of order n is represented by a real or complex matrix of
size (n, n), and a character argument uplo with two possible values: ' L” and ' U’ . If uplois ' L', the lower
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triangular part of the symmetric matrix is stored; if uplo is ’ U’, the upper triangular part is stored. A square
matrix X of size (n, n) can therefore be used to represent the symmetric matrices

X[0,0] X|[1,0] X|[2,0] X[n—1,0]

X|[1,0] X[1,1] X[2,1] X[n—1,1]

X[Q,O] X[Q, 1] X[Z, 2] cee X[n — 1, 2] ifuplo - ’L’,
_X[nz—l,()] X[nil,l] X[nil,Q] X[nfi,nfl]_

X10, 0] X1[0,1] X1[0,2] X[0,n — 1]

X|[0,1] X[1,1] X|[1,2] X[1,n—1]

X1[0,2] X[1,2] X[2,2] X[2,n 1] if uplo = U".
i X[O,?Z”L—l] X[l,?zl—l] X[Q,r:z—l] X[n—i,n—l] i

Complex Hermitian matrix A complex Hermitian matrix of order n is represented by a matrix of type ’ z’ and
size (n, n), and a character argument uplo with the same meaning as for symmetric matrices. A complex
matrix X of size (n, n) can represent the 8 Hermitian matrices

RXI0,0] X[1,0] X[2,0] X[n—1,0]

X[1,0] RX[1,1] X[2,1] Xn-1,1

X[2,0] X[2,1] RX[2,2] [n—1,2] if uplo = 'L,
_XmiLm XmiLu X[n—1,2] %Xm_ln_u_

RX[0,0] X1[0,1] X10,2] X[0,n — 1]

X[0,1] RX[1,1] X1,2] X[1,n—1]

X[Ov 2} X[17 2] %X[Qv 2] X[Qv n-— 1] if uplo ="U".
_Xm;_u K1 X@n_1] mxm_ln_u_

Triangular matrix A real or complex triangular matrix of order n is represented by a real or complex matrix of
size (n, n), and two character arguments: an argument uplo with possible values / I’ and ’ U’ to distinguish
between lower and upper triangular matrices, and an argument diag with possible values ’ U’ and ' N’ to
distinguish between unit and non-unit triangular matrices. A square matrix X of size (n, n) can represent the
triangular matrices

X|0,0] 0 0 0
X][1,0] X[1,1] 0 0
X[2,0] X[2,1] X[2,2] 0 if uplo =L’ and diag = "N’
X[n—-1,00 X[n—-1,1 X[n-—1,2] X[n—-1,n-1]
1 0 0 0
X|[1,0] 1 0 0
X[2,0] X[2,1] 1 0 if uplo =L’ and diag ="U’,
X[n—-1,00 Xn—-1,1 X[n-—1,2] 1



OO =

O e

X[0,1] X][0,2

X[1,1] X[1,2
0 X[2,2
0 0

X[0,1] X[0,2]
1 X[1,2]
0 1
0 0

if uplo =’U’ and diag =N,

if uplo =’U’ and diag ="U’.

General band matrix A general real or complex m by n band matrix with k; subdiagonals and k,, superdiagonals
is represented by a real or complex matrix X of size (k; + k., + 1, n), and the two integers m and k;. The
diagonals of the band matrix are stored in the rows of X, starting at the top diagonal, and shifted horizontally
so that the entries of the kth column of the band matrix are stored in column & of X. A matrix X of size
(k; + ky + 1, n) therefore represents the m by n band matrix

X[ky, 0]
Xky +1,0]
X[ky +2,0]

X[ky —1,1]
X[ku, 1]
X[ky +1,1]

X[ky — 2,2]
X[ky — 1,2]

X [ky, 2]

X[/fu-l—kb()] X[ku+kl—1,1] X[ku+kl—2,2]

0

X [ky + ki, 1]

X[y + b — 1,2]

ul

;o

Symmetric band matrix A real or complex symmetric band matrix of order n with k subdiagonals, is represented
by a real or complex matrix X of size (k + 1, n), and an argument uplo to indicate whether the subdiagonals
(uplo is ' L") or superdiagonals (uplo is ' U’ ) are stored. The k + 1 diagonals are stored as rows of X, starting
at the top diagonal (i.e., the main diagonal if uplo is ’ L” , or the kth superdiagonal if uplo is ’ U’ ) and shifted
horizontally so that the entries of the kth column of the band matrix are stored in column & of X. A matrix X
of size (k + 1, n) can therefore represent the band matrices

[ X[0,0]  X][1,0] X[2,0] X[k, 0]
X[1,0]  X[0,1] X[1,1] X[k —1,1]
X[2,0]  X[1,1] X10,2] X[k —2,2]
X@m XmiLn Xmizﬂ

0 X[k1]  X[k-1,2]

r Xmm X%—LH Xm_zm X0, %]
Xk—-1,1 X[k1  X[k—1,2] X[1, k]
X[k-22 X[k-1,2 X[k2 X[2,K]

X@H X@H X@H
0 X[0,k+1] X[Lk+1]

0
X[k, 1]

X[k—-1,2]
: ifuplo="L",
0 N

X0,k +1]

X[LEk+1

if uplo="U".

Hermitian band matrix A complex Hermitian band matrix of order n with k subdiagonals is represented by a com-
plex matrix of size (k + 1, n) and an argument uplo. A matrix X of size (k + 1, n) can represent the band
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matrices

[ RX[0,0]  X[1,0] X[2,0]
X[1,0]  RX[0,1] X[1,1]
X[1,1]

'ﬁkwﬁ] X%—LH X@—zﬂ

Xk-1,1 RX[k1]  X[k—1,2)
Xk-22 X[k—1,2 RX[k 2]
(0,5 ,X[ik] X[2.H

0 X[0,k+1] X[1,k+1]

X[k, 0] 0
Xk—1,1 X[k 1]
Xk—22 X[k—-1,2

X[0, k] 0
X[Lk  X[0,k+1]
2.k] X[,k +1]

if uplo="L",

if uplo="U".

Triangular band matrix A triangular band matrix of order n with k subdiagonals or superdiagonals is represented
by a real complex matrix of size (k + 1, n) and two character arguments uplo and diag. Amatrix X of size

(k 4 1, n) can represent the band matrices

X[k, 0]
0

[ X[0,0]
X[1,0]
X[2,0]

X[k, 0]
0

faflal
N =
o2

X[k, 0]

X[k —1,1]
X[k, 1]
0

X%;LH
X[k, 1]

XM;ZQ
X[k —1,2]
X[k, 2]

X[k —2,3]

1 X[k —1,2]

1

0
X[0,k+1]
X[1,k+1]

if uplo =L’ and diag = "N,

if uplo =L’ and diag ="U’,

if uplo =’U’ and diag =N’

if uplo =’U’ and diag ="U’.

When discussing BLAS functions in the following sections we will omit several less important optional arguments that
can be used to select submatrices for in-place operations. The complete specification is documented in the docstrings
of the source code and the pydoc help program.
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3.2 Level 1 BLAS

The level 1 functions implement vector operations.
scal(alpha, x)

Scales a vector by a constant:
X = Q.

If x is a real matrix, the scalar argument alpha must be a Python integer or float. If x is complex,
alpha can be an integer, float, or complex.

nrm2(x)

Euclidean norm of a vector: returns

[z][2-

asum(x)

1-Norm of a vector: returns

|z||1  (x real), |Rz|[1 + [|Sz]|1 (z complex).

iamax(x)

Returns

argmax |xg| (x real), argmax |Rxy| + |Szk| (x complex).
k=0,...,n—1 =0,...,n—1

If more than one coefficient achieves the maximum, the index of the first k is returned.

swap(x, y)

Interchanges two vectors:
T Y.

x and y are matrices of the same type ( d’ or " z”).

copy(x, v)
Copies a vector to another vector:
Y i=.
x and y are matrices of the same type (' d’ or ’ z”).
axpy(x, vl[,alpha=1.0]))

Constant times a vector plus a vector:
Y i=ar+y.

x and y are matrices of the same type (’ d’ or ' z’). If x is real, the scalar argument alpha must be a Python
integer or float. If x is complex, alpha can be an integer, float, or complex.

dot(x, v)
Returns
zfy.
x and y are matrices of the same type ( d’ or " z”).
dotu(x, vy)
Returns
Ty,

x and y are matrices of the same type ( d’ or " z”).
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3.3 Level 2 BLAS

The level 2 functions implement matrix-vector products and rank-1 and rank-2 matrix updates. Different types of
matrix structure can be exploited using the conventions of section 3.1}
gemv(A, x, y[, trans='N’[, alpha=1.0[, beta=0.0]]])

Matrix-vector product with a general matrix:
y = aAr+py (trans = 'N'), y:=aATz4+By (trans ='T’), y:=aAPz+py (trans ='C).

The arguments 2, x and y must have the same type (* d’ or ’ z’). Complex values of alpha and beta are
only allowed if A is complex.

symv(A, x, y[, uplo='"L’[, alpha=1.0[, beta=0.0]]])
Matrix-vector product with a real symmetric matrix:
= aAx + By,

where A is a real symmetric matrix. The arguments A, x and y must have type  d’ and alpha and beta must
be real.

hemv(a, x, y[, uplo='L’[, alpha=1.0[, beta=0.0]]])
Matrix-vector product with a real symmetric or complex Hermitian matrix:
y = aAx + By,

where A is real symmetric or complex Hermitian. The arguments A, x and y must have the same type (" d’ or
"z’ ). Complex values of alpha and beta are only allowed if A is complex.

trmv(a, x[, uplo='L’[, trans='N’[, diag='N’]]])
Matrix-vector product with a triangular matrix:
x:= Ax (trans ='N’), x:= ATz (trans ='T’), x:= Ay (trans ='C’),
where A is square and triangular. The arguments A and x must have the same type ( 4’ or * z”).
trsv(d, x[, uplo='L’[, trans='N’[, diag='N’]]])
Solution of a nonsingular triangular set of linear equations:
x:=A"'z (trans ='N’), r:=ATx (trans ='T'), r:=AHy (trans ='C’),

where A is square and triangular with nonzero diagonal elements. The arguments A and x must have the same
type ("d” or " z").

gbmv(A, m, k1, x, y[, trans='N’ [, alpha=1.0[, beta=0.0]]])
Matrix-vector product with a general band matrix:
y = aAr+py (trans ='N’), y:=aATz+py (trans ='T'), y = aAz+py (trans ='C'),

where A is a rectangular band matrix with m rows and k; subdiagonals. The arguments A, x and y must have
the same type (“ d’ or ’ z’). Complex values of alpha and beta are only allowed if A is complex.

sbmv(2, x, vy[, uplo='L’[, alpha=1.0[, beta=0.0]]])
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Matrix-vector product with a real symmetric band matrix:
y = aAz + By,

where A is a real symmetric band matrix. The arguments A, x and y must have type  d’ and alpha and beta
must be real.

hbmv(a, x, y[, uplo=’'L’[, alpha=1.0[, beta=0.0]]])

Matrix-vector product with a real symmetric or complex Hermitian band matrix:
y = oAz + By,

where A is a real symmetric or complex Hermitian band matrix. The arguments A, x and y must have the same
type ( d’ or ’ z’). Complex values of alpha and beta are only allowed if A is complex.

tbmv(a, x[, uplo='L’[, trans[, diag]]]
Matrix-vector product with a triangular band matrix:
z:= Ax (trans ='N’), x:= ATz (trans ='T’), x:= Ay (trans ='C’).
The arguments A and x must have the same type ( d’ or " z”).
tbsv(a, x[, uplo='L’[, trans[, diag]]])
Solution of a triangular banded set of linear equations:
x:=A"'z (trans ='N’), z:= ATy (trans ='T'), z:= A"z (trans ='T'),

where A is a triangular band matrix of with nonzero diagonal elements. The arguments A and x must have the
same type (' d’ or " z’).

ger(x, vy, A[, alpha=1.0])

General rank-1 update:
A=A+ axy”,

where A is a general matrix. The arguments A, x and y must have the same type ( 4’ or ’ z’ ). Complex values
of alpha are only allowed if A is complex.

geru(x, y, A[, alpha=1.0])

General rank-1 update:
A=A+ axy?,

where A is a general matrix. The arguments A, x and y must have the same type (* d’ or ’ z’ ). Complex values
of alpha are only allowed if A is complex.

syr(x, A[, uplo='L’[, alpha=1.0]])

Symmetric rank-1 update:
A=A+ azz?,

where A is a real symmetric matrix. The arguments A and x must have type ’ d’ . alpha must be a real number.
her(x, A[, uplo='L’[, alpha=1.0]])

Hermitian rank-1 update:
A=A+ azz?,

where A is a real symmetric or complex Hermitian matrix. The arguments A and x must have the same type
("d” or ' z'). alpha must be a real number.
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syr2(x, vy, A[, uplo='L’[, alpha=1.0]])

Symmetric rank-2 update:

A=A+ a(ey” +yz"),

where A is a real symmetric matrix. The arguments A, x and y must have type ’ d’. alpha must be real.

her2(x, vy, A[, uplo='L’[, alpha=1.0]])

Symmetric rank-2 update:

A=A+ axy™ + ayz?,

where A is a a real symmetric or complex Hermitian matrix. The arguments 2, x and y must have the same type
(d’ or’z”). Complex values of alpha are only allowed if A is complex.

As an example, the following code multiplies the tridiagonal matrix

1 6

0 0
A=12 —4 3 0
-1 1

0 -3

with the vector x = (1,-1,2,-2).

>>>
>>>
>>>
>>>
>>>
>>>
>>>

from cvxopt.base import matrix

from cvxopt.blas import gbmv

A = matrix([[O0., 1., 2.], (6., -4., -3.1,
X = matrix([(1l., -1., 2., =2.1])

y = matrix (0., (3,1))

gbmv (A, 3, 1, x, V)

print y

[-5.00e+00]
[ 1.
[-1.00e+00]

20e+01]

The following example illustrates the use of tbsv ().

>>>
>>>
>>>
>>>
>>>
>>>

0N e

[
[
[_
[

3.4

The level 3 BLAS include functions for matrix-matrix multiplication.

from cvxopt.base import matrix

from cvxopt.blas import tbsv

A = matrix([-6., 5., -1., 2.1, (1,4))
x = matrix (1.0, (4,1))

tbsv (A, x) # x := diag(A) "{-1}*x
print x

.67e-01]
.00e-01]
.00e+00]
.00e-01]

Level 3 BLAS

gemm(2A, B, C[, transA='N’[, transB='N’[, alpha=1.0[, beta=0.0]]l])

Matrix-matrix product of two general matrices:

C := aop(A)op(B) + 8C
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where

A transA = 'N’ B transB = 'N’
op(A) =4 AT transA ='T’ op(B) =<{ BT transB='T’
AT transA ='C’ BE  transB ='C'.

The arguments 2, B and C must have the same type (* d’ or ’ z’). Complex values of alpha and beta are
only allowed if A is complex.

symm(A, B, C[, side='L’[, uplo='L’[, alpha=1.0[, beta=0.0]]]])
Product of a real or complex symmetric matrix A and a general matrix B:
C:=aAB+pC (side='L/), C :=aBA+3C (side="R/).

The arguments A, B and C must have the same type (* d’ or ’ z’). Complex values of alpha and beta are
only allowed if A is complex.

hemm(a, B, C[, side='L’[, uplo='L’[, alpha=1.0[, beta=0.0]]1])
Product of a real symmetric or complex Hermitian matrix A and a general matrix B:
C:=aAB+pC (side="L"), C:=aBA+p3C (side="R/).

The arguments A, B and C must have the same type ( d’ or ’ z’). Complex values of alpha and beta are
only allowed if A is complex.

trmm(2, B[, side='L’[, uplo='L’[, transA='N’[, diag='N’[, alpha=1.0]]11D
Product of a triangular matrix A and a general matrix B:

A transA ='N’
B :=aop(A)B (side ="L"), B:=aBop(A) (side='R'), op(A) =< AT  transA ='T’
A transA ='C/.

The arguments A and B must have the same type ( d’ or ' z’ ). Complex values of alpha are only allowed if
A is complex.

trsm(A, B[, side='L’'[, uplo='L’[, transA='N’[, diag='N’[, alpha=1.0]]11])
Solution of a nonsingular triangular system of equations:

A transA ='N’
B:=aop(A)"'B (side ="L/), B:=aBop(A)™' (side ='R’), op(4) =< AT transA ='T’
AH transA ='C/,

where A is triangular and B is a general matrix. The arguments A and B must have the same type (" d’ or " z”).
Complex values of alpha are only allowed if A is complex.

syrk(2, C[, uplo='L’[, trans='N’[, alpha=1.0[, beta=0.0]]]])
Rank-k update of a real or complex symmetric matrix C:
C:=aAA” + 3C (trans = 'N'), C:=aATA+3C (trans ='T'),

where A is a general matrix. The arguments A and C must have the same type (" d’ or ’ z’ ). Complex values
of alpha and beta are only allowed if A is complex.

herk(2, C[, uplo='L’[, trans='N’[, alpha=1.0[, beta=0.0]]]])
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Rank-k£ update of a real symmetric or complex Hermitian matrix C":
C:= aAA" + 3C  (trans = 'N’), C:=aATA+ pC  (trans ='C’),

where A is a general matrix. The arguments A and C must have the same type (" d’ or ' z’). alpha and beta
must be real.

syr2k(a, B, C[, uplo='L’[, trans='N’[, alpha=1.0[, beta=0.0]]]])
Rank-2k update of a real or complex symmetric matrix C:
C := a(ABT 4+ BAT) + 8C  (trans = 'N’), C:=a(ATB+ BTA)+ BC (trans ='T’).

A and B are general real or complex matrices. The arguments A, B and C must have the same type. Complex
values of alpha and beta are only allowed if A is complex.

her2k(2, B, C[, uplo='L’[, trans='N’[, alpha=1.0[ beta=0.0]]]])
Rank-2k update of a real symmetric or complex Hermitian matrix C"
C:= aAB" + aBA" + pC  (trans ='N’), C:=aA"B+aB"A+pBC  (trans ='C’),

where A and B are general matrices. The arguments A, B and C must have the same type (d’ or ' z').
Complex values of alpha are only allowed if A is complex. bet a must be real.
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Chapter 4

The LAPACK Interface (cvxopt.lapack)

The module cvxopt . lapack includes functions for solving dense sets of linear equations, for the corresponding
matrix factorizations (LU, Cholesky, LDLT), for solving least-squares and least-norm problems, for QR factorization,
for symmetric eigenvalue problems and for singular value decomposition.

In this chapter we briefly describe the Python calling sequences. For further details on the underlying LAPACK
functions we refer to the LAPACK Users’ Guide and manual pages.

The BLAS conventional storage scheme of section[3.1]is used. As in the previous chapter, we omit from the function
definitions less important arguments that are useful for selecting submatrices. The complete definitions are docu-
mented in the docstrings in the source code.

See also: LAPACK Users’ Guide, Third Edition, SIAM, 1999

4.1 General Linear Equations
gesv(A, B[, ipiv=None])

Solves
AX =B,

where A and B are real or complex matrices, with A square and nonsingular. On exit, B is replaced by the
solution. The arguments A and B must have the same type ( d’ or ' z’). The optional argument ipiv is an
integer matrix of length at least n. If ipiv is provided, then gesv () solves the system, replaces A with its
triangular factors, and returns the permutation matrix in ipiv. If ipiv is not specified, then gesv () solves
the system but does not return the LU factorization and does not modify A. For example,

>>> gesv (A, B)
solves the system without modifying A and returns the solution in B.
>>> gesv (A, B, ipiv)

returns the solution in B and also returns the details of the LU factorization in A and ipiv.

Raises an ArithmeticError if the matrix is singular.

getrf(a, ipiv)

http://www.netlib.org/lapack/lug/lapack_lug.html
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LU factorization of a general, possibly rectangular, real or complex matrix,
A=PLU

where A is m by n. The argument ipiv is an integer matrix of length at least min{m, n}. On exit, the lower
triangular part of A is replaced by L, the upper triangular part by U, and the permutation matrix is returned in
ipiv. Raises an ArithmeticError if the matrix is not full rank.

getrs(A, ipiv, B[, trans='N’])
Solves a general set of linear equations
AX =B (trans='N), AT’X =B (trans='T'), A"X =B (trans='C'),

given the LU factorization computed by gesv () or getrf (). On entry, A and ipiv must contain the fac-
torization as computed by gesv () or getrf (). On exit, B is overwritten with the solution. B must have the
same type as A.

getri(2a, ipiv)

Computes the inverse of a matrix. On entry, A and 1 piv must contain the factorization as computed by gesv ()
or getrf (). On exit, A contains the inverse.

In the following example we compute
r=(A"1+ATH

for randomly generated problem data, factoring the coefficient matrix once.

>>> from cvxopt.base import matrix, normal
>>> from cvxopt.lapack import gesv, getrs

>>> n = 10
>>> A = normal (n,n)
>>> b = normal (n)

>>> ipiv = matrix (0, (n,1))

>>> x = +b

>>> gesv (A, x, ipiv) # x = A"{-1}+b
>>> x2 = +b

>>> getrs (A, ipiv, x2, trans='T’) # x2 = A" {-T}+*b
>>> x += x2

Separate functions are provided for equations with band matrices.
gbsv(2, k1, B[, ipiv=None])

Solves

AX =B,
where A and B are real or complex matrices, with A n by n and banded with k; subdiagonals. The arguments
A and B must have the same type (" d’ or ' z’).

The optional argument ipiv is an integer matrix of length at least n. If ipiv is provided, then A must have
2k; + k, + 1 rows. On entry the diagonals of A are stored in rows k; + 1 to 2k; + k,, + 1 of the A, using the
BLAS format for general band matrices (see section . On exit, the factorization is returned in A and ipiv.

If ipiv is not provided, then A must have k; + k,, + 1 rows. On entry the diagonals of A are stored in the rows
of A, following the standard format for general band matrices. In this case, gbsv () does not modify A on exit
and does not return the factorization.

On exit, B is replaced by the solution X. Raises an ArithmeticError if the matrix is singular.
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gbtrf(2, m, k1, ipiv)

LU factorization of a general m by n real or complex band matrix with k; subdiagonals. The matrix is stored
using the BLAS format for general band matrices (see section [3.1)), by providing the diagonals (stored as rows
of a k, + k; + 1 by n matrix), the number of rows m, and the number of subdiagonals k;. The argument ipiv
is an integer matrix of length at least min{m, n}. On exit, A and ipiv contain the details of the factorization.
Raises an ArithmeticError if the matrix is not full rank.

gbtrs(A, k1, ipiv, B[, trans='N’])

Solves a set of linear equations
AX =B (trans ='N’), ATX =B (trans ='T’), ARX =B (trans ='C’),

with A a general band matrix with k; subdiagonals, given the LU factorization computed by gbsv () or
gbtrf (). On entry, A and ipiv must contain the factorization as computed by gbsv () or gbtrf ().
On exit, B is overwritten with the solution. B must have the same type as A.

As an example, we solve a linear equation with

>>>
>>>
>>>
>>>
>>>
>>>
>>>

RN

[
[
[
[

1 2 0 0 1
3 4 5 0 1
A=l6 7 8 o | *=|1

0 10 11 12 1

from cvxopt.base import matrix

from cvxopt.lapack import gbsv, gbtrf, gbtrs

n, k1, ku =4, 2, 1

A = matrix([[(o., 1., 3., .1, (2., 4., 7., 10.1, [5., 8., 11., 0.1, I[9., 12.

X = matrix (1.0, (4,1))

gbsv (A, kl, x)

print x

.14e-02]

.64e-01]

.14e-01]

.07e-01]

The code below illustrates how one can reuse the factorization returned by gbsv () .

Ac = matrix (0.0, (2xkl+ku+l,n))

Aclkl:,:] = A

ipiv = matrix (0, (n,1))

X = matrix (1.0, (4,1))

gbsv (Ac, k1, x, ipiv) # solves Axx = 1
print x

.14e-02]
.64e-01]
.14e-01]
.07e-01]

X = matrix (1.0, (4,1))
gbtrs (Ac, k1, ipiv, x, trans='T’) # solve A"Txx = 1
print x

.14e-02]
.38e-02]
.43e-01]
.38e-02]
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An alternative method uses gbtrf () for the factorization.

>>> Acl[kl:,:] = A

>>> gbtrf (Ac, n, kl, ipiv)

>>> x = matrix (1.0, (4,1))

>>> gbtrs(Ac, k1, ipiv, x) # solve A"T*x

>>> print x
7.14e-02]

[ 4.64e-01]
2
1

Il
s

.14e-01]

.07e-01]

>>> x = matrix (1.0, (4,1))

>>> gbtrs(Ac, k1, ipiv, x, trans='T’) # solve A"Txx = 1
>>> print x

.14e-02]

.38e-02]

.43e-01]

.38e-02]

NN =N

[
[
[
[_

The following functions can be used for tridiagonal matrices. They use a simpler matrix format, that stores the
diagonals in three separate vectors.
gtsv(dl, d, du, B))

Solves
AX =B,

where A is an n by n tridiagonal matrix, with subdiagonal stored as a matrix d1 of length n — 1, diagonal stored
as a matrix d of length n, and superdiagonal stored as a matrix du of length n — 1. The four arguments must
have the same type ( d’ or ’ z’). On exit d1, d, du are overwritten with the details of the LU factorization of
A, and B is overwritten with the solution X. Raises an ArithmeticError if the matrix is singular.

gttrf(d1, d, du, du2, ipiv)

LU factorization of an n by n tridiagonal matrix with subdiagonal d;, diagonal d and superdiagonal d,,. d1,
d and du must have the same type. du?2 is a matrix of length n — 2, and of the same type as d1. ipiv
is an ' i’ matrix of length n. On exit, the five arguments contain the details of the factorization. Raises an
ArithmeticError if the matrix is singular.

pttrs(dl, d, du, du2, ipiv, B[, trans='N’])
Solves a set of linear equations
AX =B (trans ='N’), ATX =B (trans ='T'), APX =B (trans ='C'),

where A is an n by n tridiagonal matrix. The arguments d1, d, du, du2 and ipiv contain the details of the
LU factorization as returned by gt tr £ (). On exit, B is overwritten with the solution X. B must have the same
type as d1.

4.2 Positive Definite Linear Equations

posv(2, B[, uplo='L’'])

Solves
AX =B,

where A is a real symmetric or complex Hermitian positive definite matrix. On exit, B is replaced by the solution,
and A is overwritten with the Cholesky factor. The matrices A and B must have the same type ( d’ or ' z”).
Raises an ArithmeticError if the matrix is not positive definite.
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potrf(2[, uplo='L'])

Cholesky factorization
A=LL" o A=LL"

of a positive definite real symmetric or complex Hermitian matrix A. On exit, the lower triangular part of A
(if uplo is ’ L") or the upper triangular part (if uplo is ' U’) is overwritten with the Cholesky factor or its
(conjugate) transpose. Raises an ArithmeticError if the matrix is not positive definite.

potrs(2, B[, uplo='L’]))

Solves a set of linear equations
AX =B

with a positive definite real symmetric or complex Hermitian matrix, given the Cholesky factorization computed
by posv () or potrf (). On entry, A contains the triangular factor, as computed by posv () or potrf ().
On exit, B is replaced by the solution. B must have the same type as A.

potri(A[, uplo='L’'])

Computes the inverse of a positive definite matrix. On entry, A contains the Cholesky factorization computed
by potrf () or posv (). On exit, it contains the inverse.

As an example, we use posv () to solve the linear system

—diag (d)> A x| _ | b
I @

by block-elimination. We first pick a random problem.

>>> from cvxopt.base import matrix, div, normal, uniform
>>> from cvxopt.blas import syrk, gemv

>>> from cvxopt.lapack import poswv

>>> m, n = 100, 50

>>> A = normal (m,n)

>>> bl, b2 normal (m), normal (n)

>>> d = uniform(m)

We then solve the equations

ATdiag (d) "2 Azy = by + AT diag (d)~%b;,  diag (d)?z, = Azy — by.

>>> Asc = div (A, d[:, nx[0]]) # Asc := diag(d) " {-1}*A

>>> B = matrix (0.0, (n,n))

>>> syrk (Asc, B, trans='T’) # B := Asc"T  Asc = A"T x diag(d) " {-2} * A
>>> x1 = div(bl, d) # x1 := diag(d) "{-1}+bl

>>> x2 = +b2

>>> gemv (Asc, x1, x2, trans='T’, beta=1.0) # x2 := x2 + Asc "T*x1l = b2 + A"Txdiag(d) " {-2}
>>> posv (B, x2) # x2 1= B " {-1}*x2 = B"{-1}* (b2 + A"T*diag(d)”
>>> gemv (Asc, x2, x1, beta=-1.0) # x1 := Ascxx2 — x1 = diag(d) "{-1} * (Axx2 - ]
>>> x1 = div(x1l, d) # x1 := diag(d) "{-1}*x1 = diag(d) "{-2} * (A*x!

There are separate routines for equations with positive definite band matrices.
pbsv(2, B[, uplo='L'])
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Solves
AX =B

where A is a real symmetric or complex Hermitian positive definite band matrix. On entry, the diagonals of A
are stored in A, using the BLAS format for symmetric or Hermitian band matrices (see section @ On exit,
B is replaced by the solution, and A is overwritten with the Cholesky factor (in the BLAS format for triangular
band matrices). The matrices A and B must have the same type (‘ d’ or ’ z’ ). Raises an ArithmeticError
if the matrix is not positive definite.

pbtrf(2[, uplo='L'])

Cholesky factorization
A=LL" oo A=LL"

of a positive definite real symmetric or complex Hermitian band matrix A. On entry, the diagonals of A are
stored in A, using the BLAS format for symmetric or Hermitian band matrices. On exit, A contains the Cholesky
factor, in the BLAS format for triangular band matrices. Raises an ArithmeticError if the matrix is not
positive definite.

pbtrs(a, B[, uplo='L’'])

Solves a set of linear equations
AX =B

with a positive definite real symmetric or complex Hermitian band matrix, given the Cholesky factorization
computed by pbsv () or pbtrf (). On entry, A contains the triangular factor, as computed by pbsv () or
pbtrf (). On exit, B is replaced by the solution. B must have the same type as A.

The following functions are useful for tridiagonal systems.
ptsv(d, e, B)

Solves
AX = B,

where A is an n by n positive definite real symmetric or complex Hermitian tridiagonal matrix. Its diagonal
is stored as a / d’ matrix d of length n and its subdiagonal as a * d’ or ' z’ matrix e of length n — 1. The
arguments e and B must have the same type. On exit d contains the diagonal elements of D in the LDLT or
LDLH factorization of A, and e contains the subdiagonal elements of the unit lower bidiagonal matrix L. B is
overwritten with the solution X. Raises an ArithmeticError if the matrix is singular.

pttrf(d, e)

LDLT or LDLH factorization of an n by n positive definite real symmetric or complex Hermitian tridiagonal
matrix A. On entry, the argument d is a * d’ matrix with the diagonal elements of A. The argument e is * d’ or
’ z' matrix with the subdiagonal elements of A. On exit d contains the diagonal elements of D, and e contains
the subdiagonal elements of the unit lower bidiagonal matrix L. Raises an ArithmeticError if the matrix
is singular.

gttrs(d, e, B[, uplo='L']))

Solves a set of linear equations
AX =B

where A is an n by n positive definite real symmetric or complex Hermitian tridiagonal matrix, given its LDLT
or LDLH factorization. The argument d is the diagonal of the diagonal matrix D. The argument uplo only
matters for complex matrices. If uplo is ' L”, then on exit e contains the subdiagonal elements of the unit
bidiagonal matrix L. If uplo is ' U’, then e contains the complex conjugates of the elements of the unit
bidiagonal matrix L. On exit, B is overwritten with the solution X. B must have the same type as e.
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4.3 Symmetric and Hermitian Linear Equations
sysv(a, B[, ipiv=None[, uplo='L’"]])

Solves
AX =B

where A is a real or complex symmetric matrix of order n. On exit, B is replaced by the solution. The matrices
A and B must have the same type ( d’ or ’ z’ ). The optional argument ipiv is an integer matrix of length at
least equal to n. If ipiv is provided, sysv () solves the system and returns the factorization in A and ipiv.
If ipiv is not specified, sysv () solves the system but does not return the factorization and does not modify
A. Raises an ArithmeticError if the matrix is singular.

sytrf(2, ipiv[, uplo='L'])

LDLT factorization
PAPT = LDLT

of a real or complex symmetric matrix A of order n. ipivisan’ i’ matrix of length at least n. On exit, A and
ipiv contain the factorization. Raises an ArithmeticError if the matrix is singular.

sytrs(A, ipiv, B[, uplo='L’])

Solves
AX =B

given the LDLT factorization computed by sytrf () or sysv (). B must have the same type as A.
sytri(A, ipiv[, uplo='L’])

Computes the inverse of a real or complex symmetric matrix. On entry, A and ipiv contain the LDLT factor-
ization computed by sytrf () or sysv (). On exit, A contains the inverse.

hesv(2, B[, ipiv=None[, uplo='L’]])

Solves
AX =B

where A is a real symmetric or complex Hermitian of order n. On exit, B is replaced by the solution. The
matrices A and B must have the same type ( d’ or ’ z’). The optional argument ipiv is an integer matrix of
length at least n. If ipiv is provided, then hesv () solves the system and returns the factorization in A and
ipiv. If ipiv is not specified, then hesv () solves the system but does not return the factorization and does
not modify A. Raises an ArithmeticError if the matrix is singular.

hetrf(a, ipiv[, uplo='L1']))

LDLH factorization
PAPT = LDLH

of a real symmetric or complex Hermitian matrix of order n. ipiv is an /i’ matrix of length at least n. On
exit, A and ipiv contain the factorization. Raises an ArithmeticError if the matrix is singular.

hetrs(2, ipiv, B[, uplo='L’))

Solves
AX =B

given the LDLH factorization computed by hetrf () or hesv ().

hetri(2, ipiv[, uplo='L’])
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Computes the inverse of a real symmetric or complex Hermitian matrix. On entry, A and ipiv contain the
LDL factorization computed by hetrf () or hesv (). On exit, A contains the inverse.

As an example we solve the KKT system (&.1).

>>> from cvxopt.lapack import sysv
>>> K = matrix (0.0, (m+n,m+n))

>>> K[: (m+n)+m : m+n+l] = —-d*=*2
>>> K[:m, m:] = A

>>> x = matrix (0.0, (m+n,1))

>>> x[:m], x[m:] = bl, b2

>>> sysv (K, x, uplo='U")

4.4 Triangular Linear Equations
trtrs(A, B[, uplo='L’[, trans='N’[, diag='N’]]])
Solves a triangular set of equations
AX =B (trans ='N’), ATX =B (trans ='T’), APX =B (trans ='C),

where A is real or complex and triangular of order n, and B is a matrix with n rows. A and B are matrices with the
sametype (‘d’ or’z’). trtrs () issimilartoblas.trsm(),exceptthatitraisesan ArithmeticError
if a diagonal element of A is zero (whereas blas.trsm () returns inf values).

trtri(A[, uplo='L’[, diag='N’"]])
Computes the inverse of a real or complex triangular matrix A. On exit, A contains the inverse.
tbtrs(2, B[, uplo='L’[, trans='T'[,diag="N']]])
Solves a triangular set of equations
AX =B (trans ='N’), ATX =B (trans ='T'), ARX =B (trans ='C’),

where A is real or complex triangular band matrix of order n, and B is a matrix with n rows. The diagonals of
A are stored in A using the BLAS conventions for triangular band matrices. A and B are matrices with the same
type (" d’ or ’ z’). On exit, B is replaced by the solution X.

4.5 Least-Squares and Least-Norm Problems
gels(A, B[, trans='N’])
Solves least-squares and least-norm problems with a full rank m by n matrix A.
1. transis ' N’.If m is greater than or equal to n, gels () solves the least-squares problem
minimize ||AX — B|F.
If m is less than or equal to n, gels () solves the least-norm problem

minimize || X||r
subjectto AX = B.
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2. transis T’ or 'C’ and A and B are real. If m is greater than or equal to n, gels () solves the
least-norm problem
minimize || X|| ¢
subjectto ATX = B.

If m is less than or equal to n, gels () solves the least-squares problem
minimize ||ATX — B||F.

3. transis’C’ and A and B are complex. If m is greater than or equal to n, gels () solves the least-norm
problem
minimize || X||p
subjectto AHX = B.

If m is less than or equal to n, gels () solves the least-squares problem
minimize ||A¥ X — B||F.

A and B must have the same typecode (“ d’ or ' z’). trans ="'T’ is not allowed if A is complex. On exit, the
solution X is stored as the leading submatrix of B. The array A is overwritten with details of the QR or the LQ
factorization of A. Note that gels () does not check whether A is full rank.

geqrf(a, tau)
QR factorization of a real or complex matrix A:
A=QR.

If 2 is m by n, then () is m by m and orthogonal/unitary, and R is m by n and upper triangular (if m is greater
than or equal to n), or upper trapezoidal (if m is less than or equal to n). tau is a matrix of the same type as A
and of length at least min{m, n}. On exit, R is stored in the upper triangular part of A. The matrix @ is stored
as a product of min{m, n} elementary reflectors in the first min{m, n} columns of A and in tau.

ormqr(2A, tau, C[, side='L’[, trans='N’]])
Product with a real orthogonal matrix:

C:=0p(Q)C (side='L'), C:=Cop(Q) (side='R), op(@>={ gT prans = 1

)

where () is square and orthogonal. @ is stored in A and tau as a product of min{A.size[0], A.size[l]}
elementary reflectors, as computed by geqrf ().

unmqr(2, tau, C[, side='L’[, trans='N’]])
Product with a real orthogonal or complex unitary matrix:

Q  trans ='N’
C :=op(Q)C (side ="L"), C:=Cop(Q) (side='R), op(Q) =14 QT trans='T’
QY  trans ='C/,

@ is square and orthogonal or unitary. @ is stored in A and tau as a product of min{A.size[0], A.size[1]}
elementary reflectors, as computed by geqgrf (). The arrays A, tau and C must have the same type. trans
= ' T’ is only allowed if the typecode is ’ d’ .

In the following example, we solve a least-squares problem by a direct call to gels (), and by separate calls to
geqrf (),ormgr (),and trtrs ().
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>>> from cvxopt import random, blas, lapack
>>> from cvxopt.base import matrix

>>> m, n = 10, 5

>>> A, b = random.normal (m,n), random.normal (m,1)

>>> x1 = +b

>>> lapack.gels (+A, x1) # x1[:n] minimizes ||Axx1[:n] - b||_2
>>> tau = matrix (0.0, (n,1))

>>> lapack.geqrf (A, tau) # A = [Q1l, Q2] = [R1l; 0]

>>> x2 = +b

>>> lapack.ormqgr (A, tau, x2, trans='T') # x2 := [Ql, Q21" x b

>>> lapack.trtrs(Al:n,:], x2, uplo='U") # x2[:n] := R1{-1}*x2[:n]

>>> blas.nrm2(x1[:n] - x2[:n])

3.0050798580569307e-16

4.6 Symmetric and Hermitian Eigenvalue Decomposition

The first four routines compute all or selected eigenvalues and eigenvectors of a real symmetric matrix A:
A = Vdiag( \)V7, Vv =1

syev(A, W[, jobz='N’[, uplo='L']])

Eigenvalue decomposition of a real symmetric matrix of order n. W is a real matrix of length at least n. On
exit, W contains the eigenvalues in ascending order. If jobz is ’ V', the eigenvectors are also computed and
returned in A. If jobz is ' N’ , the eigenvectors are not returned and the contents of A are destroyed. Raises an
ArithmeticError if the eigenvalue decomposition fails.

syevd(A, W[, jobz='N’[, uplo='L’']])

This is an alternative to syev (), based on a different algorithm. It is faster on large problems, but also uses
more memory.

syevx(A, W[, jobz='N’[, range='A’[, uplo='L’[, v1=0.0, vu=0.0[, il=1, iu=1[, Z=NonelllllD)

Computes selected eigenvalues and eigenvectors of a real symmetric matrix A of order n.

W is a real matrix of length at least n. On exit, W contains the eigenvalues in ascending order. If range
is 7 A’ all the eigenvalues are computed. If range is / I’, eigenvalues ¢; through ¢, are computed, where
1 <4 <14, <n.Ifrangeis’V’, the eigenvalues in the interval (v;, v,] are computed.

If jobzis ’ V', the (normalized) eigenvectors are computed, and returned in Z. If jobz is ' N’ , the eigenvectors
are not computed. In both cases, the contents of A are destroyed on exit. Z is optional (and not referenced) if
jobz is ' N’. It is required if jobz is ' V/ and must have at least n columns if range is A’ or ' V' and at
least ¢, — i; + 1 columns if rangeis " I".

syevx () returns the number of computed eigenvalues.
syevr(A, W[, jobz='N’[, range="A’[, uplo='L’'[, v1=0.0, vu=0.0[, il=1, iu=n[, Z=None]]lll])

This is an alternative to syevx (). syevr () is the most recent LAPACK routine for symmetric eigenvalue
problems, and expected to supersede the three other routines in future releases.

The next four routines can be used to compute eigenvalues and eigenvectors for complex Hermitian matrices:
A = Vdiag( \)VH, VHYV =TI

For real symmetric matrices they are identical to the corresponding syev_() routines.
heev(2, W[, Jjobz='N’[, uplo='L']])
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Eigenvalue decomposition of a real symmetric or complex Hermitian matrix of order n. The calling sequence is
identical to syev (), except that A can be real or complex.

heevd(2, W[, jobz='N’[, uplo='L’]])
This is an alternative to heev ().
heevx(2, W[, Jjobz='N’[, range='A’[, uplo='L’[, v1=0.0, vu=0.0 [, il=1, diu=n[, Z=Nonelllll])

Computes selected eigenvalues and eigenvectors of a real symmetric or complex Hermitian matrix of order n.
The calling sequence is identical to syevx (), except that A can be real or complex. Z must have the same type
as A.

heevr(2, W[, jobz='N’[, range='A’[, uplo='L’[, v1=0.0, vu=0.0[, 1il1=1, iu=n[, Z=Nonelllll])

This is an alternative to heevx ().

4.7 Generalized Symmetric Definite Eigenproblems
Three types of generalized eigenvalue problems can be solved:
AZ = BZdiag (\) (type 1), ABZ = Zdiag (\) (type 2), BAZ = Zdiag (\) (type 3), 4.2)

with A and B real symmetric or complex Hermitian, and B positive definite. The matrix of eigenvectors is normalized
as follows:
ZHEBZ =T (types 1 and 2), ZEB='Z =1 (type?3).
sygv(a, B, W[, itype=1[, jobz='N’[, uplo='L"]]])
Solves the generalized eigenproblem (4.2)) for real symmetric matrices of order n, stored in real matrices A and
B. itype is an integer with possible values 1, 2, 3, and specifies the type of eigenproblem. W is a real matrix of
length at least n. On exit, it contains the eigenvalues in ascending order. On exit, B contains the Cholesky factor

of B. If jobz is ' V', the eigenvectors are computed and returned in A. If jobz is ’ N’ the eigenvectors are
not returned and the contents of A are destroyed.

hegv(A, B, W[, itype=1[, jobz='N’'[, uplo='L']]])

Generalized eigenvalue problem (4.2)) of real symmetric or complex Hermitian matrix of order n. The calling
sequence is identical to sygv (), except that A and B can be real or complex.

4.8 Singular Value Decomposition
gesvd(2, S[, jobu='N’[, jobvt='N’[, U=None[, Vt=Nonel]l]])
Singular value decomposition
A=UxVT, A=UxVH
of a real or complex m by n matrix A.

S is a real matrix of length at least min{m, n}. On exit, its first min{m, n} elements are the singular values in
descending order.

The argument jobu controls how many left singular vectors are computed. The possible values are ' N’, " A’
S’ and ' O’ . If jobu is ' N’ , no left singular vectors are computed. If jobuis A’ , all left singular vectors
are computed and returned as columns of U. If jobu is ’ S’, the first min{m,n} left singular vectors are
computed and returned as columns of U. If jobu is * 0’ the first min{m, n} left singular vectors are computed
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and returned as columns of A. The argument U is None (if jobuis N’ or ' A’) or a matrix of the same type
as A.

The argument jobvt controls how many right singular vectors are computed. The possible values are ' N,
"A’, 7S’ and " O’. If jobvt is ' N’, no right singular vectors are computed. If jobvt is ' A’, all right
singular vectors are computed and returned as rows of Vt. If jobvt is ’ S”, the first min{m, n} right singular
vectors are computed and their (conjugate) transposes are returned as rows of Vt. If jobvt is 7 O, the first
min{m, n} right singular vectors are computed and their (conjugate) transposes are returned as rows of A. Note
that the (conjugate) transposes of the right singular vectors (i.e., the matrix V) are returned in vVt or A. The
argument Vt can be None (if jobvt is ' N’ or / A’ ) or a matrix of the same type as A.

On exit, the contents of A are destroyed.
gesdd(2, S[, Jjobz='N’[, U=None[, Vt=Nonel]]])

Singular value decomposition of a real or complex m by n matrix A. This function is based on a divide-and-
conquer algorithm and is faster than gesvd ().

S is a real matrix of length at least min{m, n}. On exit, its first min{m, n} elements are the singular values in
descending order.

The argument jobz controls how many singular vectors are computed. The possible values are ' N’ , " A’ , ' S’
and ' O’. If jobz is ' N’, no singular vectors are computed. If jobz is A’ , all m left singular vectors are
computed and returned as columns of U and all n right singular vectors are computed and returned as rows of
vt. If jobz is ’ S”, the first min{m, n} left and right singular vectors are computed and returned as columns
of U and rows of Vt. If jobz is ' O’ and m is greater than or equal to n, the first n left singular vectors are
returned as columns of A and the n right singular vectors are returned as rows of Vt. If jobz is O’ and m is
less than n, the m left singular vectors are returned as columns of U and the first m right singular vectors are
returned as rows of A. Note that the (conjugate) transposes of the right singular vectors are returned in Vt or A.

The argument U can be None (if jobz is "N’ or ' A’ of jobz is O’ and m is greater than or equal to n) or
a matrix of the same type as A. The argument Vt can be None (if jobz is "N’ or A’ or jobz is ' O’ and m
is less than n) or a matrix of the same type as A.

On exit, the contents of A are destroyed.

4.9 Example: Analytic Centering
The analytic centering problem is defined as
minimize —) ;- log(b; — alz).

In the code below we solve the problem using Newton’s method. At each iteration the Newton direction is computed
by solving a positive definite set of linear equations

AT diag (b — Az) 2 Av = —diag (b — Az)~'1

(where A has rows al'), and a suitable step size is determined by a backtracking line search.

We use the level-3 BLAS function syrk () to form the Hessian matrix and the LAPACK function posv () to solving
the Newton system. The code can be further optimized by replacing the matrix-vector products with the level-2 BLAS
function gemv ().

from cvxopt.base import matrix, log, mul, div
from cvxopt import blas, lapack, random
from math import sqgrt

def acent (A,Db):
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Returns the analytic center of Axx <= Db.
We assume that b > 0 and the feasible set is bounded.

mnmn

MAXITERS = 100
ALPHA = 0.01
BETA = 0.5

e-8

TOL =1

m, n = A.size

X = matrix (0.0, (n,1))
H = matrix (0.0, (n,n))

for iter in xrange (MAXITERS) :

# Gradient is g = A"T * (1./(b-Axx)).
d = (b-A*x)*x-1
g =A.T » d

# Hessian is H = A"T x diag(d) "2 * A.
Asc = mul( d[:,n%x[0]], A )
blas.syrk (Asc, H, trans='T')

# Newton step is v = -H -1 * g.
v = —g
lapack.posv (H, V)

# Terminate if Newton decrement is less than TOL.
lam = blas.dot (g, V)
if sgrt(-lam) < TOL: return x

# Backtracking line search.

y = mul (Axv, d)

step = 1.0

while l-step*max(y) < 0: step »= BETA

while True:
if -sum(log(l-step=*y)) < ALPHAxstep=*lam: break
step x= BETA

X += step*v
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Chapter 5

Discrete Transforms (cvxopt . fftw)

The cvxopt . fftw module is an interface to the FFTW library and contains routines for discrete Fourier, cosine,
and sine transforms. This module is optional, and only installed when the FFTW library is made available during the
CVXOPT installation.

See also: FFTW3 code, documentation, copyright and licensem

5.1 Discrete Fourier Transform
dft(x)

Replaces the columns of a dense complex matrix with their discrete Fourier transforms: if X has n rows,

n—1
X[k, :=) e 2mWlnxliy k=0,...,n—1.

Jj=0

idft(x)
Replaces the columns of a dense complex matrix with their inverse discrete Fourier transforms: if X has n rows,
X[k, ::lnile%jk\/j/”X[j,:}, k=0,....,n—1.
n

The separable discrete two dimensional Fourier transform first computes the corresponding one dimensional tranform
along the columns of the matrix, followed by the one dimensional transform along the rows of the matrix.
dft2(x)

Replaces a dense complex matrix with the two dimensional discrete Fourier transform.
idft2(X)

Replaces a dense complex matrix with the inverse two dimensional discrete Fourier transform.

5.2 Discrete Cosine Transform

det(x[, type=2])

Ihttp://www. fftw.org
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Replaces the columns of a dense real matrix with their discrete cosine transforms. The second argument, an
integer between 1 and 4, denotes the type of transform (DCT-I, DCT-II, DCT-III, DCT-IV). The DCT-I transform
requires that the row dimension of X is at least 2. These transforms are defined as follows (for a matrix with n

rows).
DCT-I: X[k, ] = X[o,:]+(—1)kX[n—1,:}+2§X[j,:]cos(wjk/(n—1)), kE=0,...,n—1.
j=1
DCT-I:  X[k,:] := 2§X[j,:]cos(w(j+1/2)k/n), k=0,...,n—1.
j=0
DCT-IL:  X[k,:] := X[O,:]+2§X[j,:]cos(7rj(k+1/2)/n), k=0,...,n—1.
DCTIV:  X[k,:] := QSX[j,:]cos(ﬂ(j—&-1/2)(k—|—1/2)/n), k=0,...,n—1.
j=0

idet(X[, type=2])
Replaces the columns of a dense real matrix with the inverses of the discrete cosine transforms defined above.

The separable discrete two dimensional cosine transform first computes the corresponding one dimensional tranform
along the columns of the matrix, followed by the one dimensional transform along the rows of the matrix.
det2(X[, type=2])

Replaces a dense real matrix with the two dimensional discrete cosine transform.
idct2(X[, type=2])

Replaces a dense real matrix with the inverse two dimensional discrete cosine transform.

5.3 Discrete Sine Transform
dst(X[, type=1])

Replaces the columns of a dense real matrix with their discrete sine transforms. The second argument, an integer
between 1 and 4, denotes the type of transform (DST-I, DST-1I, DST-III, DST-1V). These transforms are defined
as follows (for a matrix with n rows).

DST-I: X[k,:] = ZHZ_:lX[j Jsin(n(j+ 1)(k+1)/(n+ 1)), k=0,....,n—1.

3=0

DST-I: X[k,:] = QHX_:X[j Jsin(n(j +1/2)(k + 1)/n), k=0,...,n—1.
3=0

DST-IL:  X[k,:] = (=1)*X[n—1,:]+ 2T§X[j, Jsin(r(j + 1)(k 4+ 1/2)/n), k=0,...,n—1.

7=0

DST-IV: X[k,:] = 2§X[j sin(m(j +1/2)(k+1/2)/n), k=0,...,n—1.

§=0

idst(X[, type=1])
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Replaces the columns of a dense real matrix with the inverses of the discrete sine transforms defined above.

The separable discrete two dimensional sine transform first computes the corresponding one dimensional tranform
along the columns of the matrix, followed by the one dimensional transform along the rows of the matrix.
dst2(X[, type=1])

Replaces a dense real matrix with the two dimensional discrete sine transform.
idst2(X[, type=1])

Replaces a dense real matrix with the inverse two dimensional discrete sine transform.
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Chapter 6

Sparse Matrices (cvxopt .base)

In this chapter we discuss the spmat rix object defined in cvxopt .base.

6.1 Creating Sparse Matrices

A general spmatrix object can be thought of as a triplet description of a sparse matrix, i.e., a list of entries of the
matrix, with for each entry the value, row index, and column index. Entries that are not included in the list are assumed
to be zero. For example, the sparse matrix

0 2 0 0 3
2 0 0 0O

A= -1 -2 0 4 0 6.1)
01 0 0

has the triplet description
(2,1,0), (-1,2,0), (2,0,1), (—2,2,1), (1,3,2), (4,2,3), (3,0,4).
The list may include entries with a zero value, so triplet descriptions are not necessarily unique. The list
(2,1,0), (—1,2,0), (0,3,0), (2,0,1), (—2,2,1), (1,3,2), (4,2,3), (3,0,4)

is another triplet description of the same matrix.

An spmatrix object corresponds to a particular triplet description of a sparse matrix. We will refer to the entries in
the triplet description as the nonzero entries of the object, even though they may have a numerical value zero.

Two functions are provided to create sparse matrices. The first, spmatrix (), constructs a sparse matrix from a
triplet description.

spmatrix(x, I, J[, size[, tc]])

I and J are sequences of integers (lists, tuples, array arrays, xrange objects, ... ) or integer matrices (mat rix
objects with typecode ’ i’ ), containing the row and column indices of the nonzero entries. The lengths of I
and J must be equal. If they are matrices, they are treated as lists of indices stored in column-major order, i.e.,
as lists 1ist (I), respectively, 1ist (J).

size is a tuple of nonnegative integers with the row and column dimensions of the matrix. The size argument
is only needed when creating a matrix with a zero last row or last column. If size is not specified, it is
determined from I and J: the default value for size [0] is max(I)+1 if I is nonempty and zero otherwise.
The default value for size [1] is max(J)+1 if J is nonempty and zero otherwise.

tcis the typecode, ' d’ or ’ z’, for double and complex matrices, respectively. Integer sparse matrices are not
implemented.
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x can be a number, a sequence of numbers, or a dense matrix. This argument specifies the numerical values of
the nonzero entries.

e If x is a number (Python integer, float or complex), a matrix is created with the sparsity pattern
defined by I and J, and nonzero entries initialized to the value of x. The default value of tcis ’ d’ if x
is integeror float,and ' z’ if x is complex.

The following code creates a 4 by 4 sparse identity matrix.
>>> from cvxopt.base import spmatrix

>>> A = spmatrix (1.0, range(4), range(4))
>>> print A

[ 1.00e+00 0 0 0 ]
[ 0 1.00e+00 0 0 ]
[ 0 0 1.00e+00 0 ]
[ 0 0 0 1.00e+00]

e If x is a sequence of numbers, a sparse matrix is created with the entries of x copied to the entries indexed
by I and J. The list x must have the same length as I and J. The default value of tc is determined from
the elements of x: ’ d’ if x contains integers and floating-point numbers or if x is an empty list, and ’ z’
if x contains at least one complex number.

As an example, the matrix (6.I) can be created as follows.

>>> A = spmatrix([2,-1,2,-2,1,4,3], I[1,2,0,2,3,2,0], [0,0,1,1,2,3,4])
>>> print A

[ 0 2.00e+00 0 0 3.00e+00]
[ 2.00e+00 0 0 0 0 1
[-1.00e+00 -2.00e+00 0 4.00e+00 0 ]
[ 0 0 1.00e+00 0 0 ]

o If x is a dense matrix, a sparse matrix is created with all the entries of x copied, in column-major order, to
the entries indexed by I and J. The matrix x must have the same length as I and J. The default value of
tcis’d’ ifxisan’ i’ or ' d’ matrix, and ’ z’ otherwise.

If T and J contain repeated entries, the corresponding values of the coefficients are added.

The function sparse () constructs a sparse matrix from a block-matrix description.
sparse(x[, tc])

tc is the typecode, * d’ or ’ z’, for double and complex matrices, respectively.

x can be a matrix, spmatrix, or a list of lists of matrices (matrix or spmatrix objects) and numbers
(Python integer, float or complex).

e If xisamatrix or spmatrix object, then a sparse matrix of the same size and the same numerical value
is created. Numerical zeros in x are treated as structural zeros and removed from the triplet description of
the new sparse matrix.

o If x is a list of lists of matrices (matrix or spmatrix) and numbers (Python integer, float or
complex) then each element of x is interpreted as a (block-)column matrix stored in colum-major order,
and a block-matrix is constructed by juxtaposing the len (x) block-columns (as in matrix (), see
section [2.T). Numerical zeros are removed from the triplet description of the new matrix.

The following example shows how to construct a sparse block-matrix.

>>> from cvxopt.base import matrix, spmatrix, sparse
>>> A = matrix([[1, 2, 0], [2, 1, 21, [0, 2, 111)
>>> B = spmatrix([], [1, T[], (3,3))

>>> C spmatrix ([3, 4, 51, [0, 1, 2], [0, 1, 2])
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>>> D = sparse([[A, B], [B, Cl])
>>> print D

[ 1.00e+00 2.00e+00 0 0 0 0 1
[ 2.00e+00 1.00e+00 2.00e+00 0 0 0 1
[ 0 2.00e+00 1.00e+00 0 0 0 ]
[ 0 0 0 3.00e+00 0 0 ]
[ 0 0 0 0 4.00e+00 0 ]
[ 0 0 0 0 0 5.00e+00]

A matrix with a single block-column can be represented by a single list.

>>> D = sparse([A, C])
>>> print D

[ 1.00e+00 2.00e+00 0 ]
[ 2.00e+00 1.00e+00 2.00e+00]
[ 0 2.00e+00 1.00e+00]
[ 3.00e+00 0 0 ]
[ 0 4.00e+00 0 ]
[ 0 0 5.00e+00]

The function spdiag () constructs a block-diagonal sparse matrix from a list of matrices.
spdiag(x)

x is a matrix with a single row or column, or a list of square dense or sparse matrices or scalars. If x is matrix,
a sparse diagonal matrix is returned with the entries of x on its diagonal. If x is list, a sparse block-diagonal
matrix is returned with the element in the list as its diagonal blocks.

The following example shows how to construct a sparse block-diagonal matrix.

>>> from cvxopt.base import matrix, spmatrix, spdiag
>>> A = 3.0

>>> B = matrix ([[1,-2],[-2,111)

>>> C = spmatrix([ ,1,1,1,11,10,1,2,0,0,1,[0,0,0,1,2])

>>> D = spdiag([A, B, CI])

>>> print D

[ 3.00e+00 0 0 0 0 0 ]
[ 0 1.00e+00 -2.00e+00 0 0 0 ]
[ 0 -2.00e+00 1.00e+00 0 0 0 ]
[ 0 0 0 1.00e+00 1.00e+00 1.00e+00]
[ 0 0 0 1.00e+00 0 0 ]
[ 0 0 0 1.00e+00 0 0 ]

6.2 Attributes and Methods

The following attributes and methods are defined for spmat rix objects.
\Y%

A single-column dense matrix containing the numerical values of the nonzero entries in column-major order.
Making an assignment to the attribute is an efficient way of changing the values of the sparse matrix, without
changing the sparsity pattern.

When the attribute V is read, a copy of V is returned, as a new dense matrix. (This implies, for example, that an
indexed assignment ”A.V[I] = B” does not work, or at least cannot be used to modify A. Instead the attribute
Vv will be read and returned as a new matrix; then the elements of this new matrix are modified.)
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A single-column integer matrix with the row indices of the entries in V. A read-only attribute.

A single-column integer matrix with the column indices of the entries in V. A read-only attribute.
size

A tuple with the dimensions of the matrix. The size of the matrix can be changed by altering this attribute, as
long as the number of elements in the matrix remains unchanged.

CCS

A triplet (colptr, rowind, values) with the compressed-column-storage representation of the matrix. A read-only
attribute. This attribute can be used to export sparse matrices to other packages such as MOSEK.

trans()
Returns the transpose of a sparse matrix as a new sparse matrix. One can also use A. T instead of A. trans ().
ctrans()

Returns the complex conjugate transpose of a sparse matrix as a new sparse matrix. One can also use A.H
instead of A.ctrans ().

In the following example we take the elementwise square root of the matrix

0 2 0 0 3
2 0 0 0 O
A= 1 2 0 4 0 (6.2)
0 0 1 0 0
>>> from cvxopt.base import sqgrt
>>> A = spmatrix([2,1,2,2,1,3,4]1, [1.,2,0,2,3,0,2], [0,0,1,1,2,3,3])
>>> B = spmatrix(sqgrt(A.V), A.I, A.J)
>>> print B
[ 0 1.41e+00 0 1.73e+00]
[ 1.41e+00 0 0 0 ]
[ 1.00e+00 1.41e+00 0 2.00e+00]
[ 0 0 1.00e+00 0 ]
The next example below illustrates assignments to V.
>>> from cvxopt.base import spmatrix, matrix
>>> A = spmatrix(range(5), [0,1,1,2,2]1, [0,0,1,1,21)
>>> print A
[ 0.00e+00 0 0 ]
[ 1.00e+00 2.00e+00 0 ]
[ 0 3.00e+00 4.00e+00]
>>> B = spmatrix(A.V, A.J, A.I, (4,4)) # transpose and add a zero row and column
>>> print B
[ 0.00e+00 1.00e+00 0 0 ]
[ 0 2.00e+00 3.00e+00 0 ]
[ 0 0 4.00e+00 0 ]
[ 0 0 0 0 ]

>>> print matrix (B)
[ 0.00e+00 1.00e+00 0.00e+00 0.00e+00]
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[ 0.00e+00 2.00e+00 3.00e+00 0.00e+00]

[ 0.00e+00 0.00e+00 4.00e+00 0.00e+00]

[ 0.00e+00 0.00e+00 0.00e+00 0.00e+00]

>>> B.V = matrix([1., 7., 8., 6., 4.1) # assign new values to nonzero entries
>>> print B

[ 1.00e+00 7.00e+00 0 0 ]

[ 0 8.00e+00 6.00e+00 0 ]

[ 0 0 4.00e+00 0 ]

[ 0 0 0 0 ]

>>> B.V += 1.0 # add 1 to the nonzero entries
>>> print B

[ 2.00e+00 8.00e+00 0 0 ]

[ 0 9.00e+00 7.00e+00 0 ]

[ 0 0 5.00e+00 0 ]

[ 0 0 0 0 ]

The Vv, I and J attributes can be used for reading sparse matrices from or writing them to binary files. Suppose we
want to write the matrix A defined above to a binary file.

>>> f = open(’test.bin’,’w’)
>>> A.V.tofile (f)

>>> A.I.tofile(f)

>>> A.J.tofile(f)

>>> f.close ()

A sparse matrix can be created from this file as follows.

>>> f = open(’test.bin’,’r’)

>>> V = matrix (0.0, (5,1)); V.fromfile (f)
>>> I = matrix (0, (5,1)); I.fromfile (f)
>>> J = matrix (0, (5,1)); J.fromfile(f)
>>> B = spmatrix (v, I, J)

>>> print B

[ 0.00e+00 0 0 ]

[ 1.00e+00 2.00e+00 0 ]

[ 0 3.00e+00 4.00e+00]

Note that the pickle module provides a convenient alternative to this method.

6.3 Arithmetic Operations

Most of the operations defined for dense  d’ and ’ z’ matrices (section[2.3)) are also defined for sparse matrices. In
the following table, A is a sparse matrix, B is sparse or dense, and c is a scalar, defined as a Python number or a 1 by
1 dense matrix.

Unary plus/minus +A, -A

Addition A+B, B+A, A+c, c+A
Subtraction A-B,B-A,A-c,c—-A
Matrix multiplication AxB, B¥A

Scalar multiplication and division | c*A, Axc,A/c

If B is a dense matrix, then the result of A+B, B+A, A-B, B—A is a dense matrix. The typecode of the resultis * d’ if
A has typecode ’ d’ and B has typecode ' 1’ or ' d’, anditis ’ z’ if A and/or B have typecode ' z" .
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If B is a sparse matrix, then the result of A+B, B+A, A-B, B—A is a sparse matrix. The typecode of the resultis ’ d’ if
A and B have typecode ' d’, and ' z’ otherwise.

If ¢ in A+c, A-c, c+A, c—A is a number, then it is interpreted as a dense matrix with the same size as A, typecode
given by the type of c, and all entries equal to c. If c is a 1 by 1 dense matrix and the size of A is not 1 by 1, then
c is interpreted as a dense matrix of the same size as A, typecode given by the typecode of c, and all entries equal to
c[0].

The result of a matrix-matrix product A+B or B+A is a dense matrix if B is dense, and sparse if B is sparse. The
matrix-matrix product is not allowed if B is a dense ’ 1’ matrix.

If ¢ is a number (Python integer float or complex), then the operations c+A and Axc define scalar multipli-
cation and return a sparse matrix.

If cis a1 by 1 dense matrix, then, if possible, the products c+A and Axc are interpreted as matrix-matrix products
and a dense matrix is returned. If the product cannot be interpreted as a matrix-matrix product (either because the
dimensions of A are incompatible or because c has typecode ’ i), then the product is interpreted as the scalar
multiplication with ¢ [0] and a sparse matrix is returned.

The division A/ c is interpreted as scalar multiplication with 1.0/c if c is a number, or with 1. 0/c[0] if cisa 1
by 1 dense matrix.

The following in-place operations are defined for a sparse matrix A if they do not change the dimensions or type of A.

In-place addition A+=B, A+=cC
In-place subtraction A-=B, A—=c
In-place scalar multiplication and division | Ax=c, A/=c

For example, "A += 1.0” is not allowed because the operation A = A + 1.0 results in a dense matrix, so it
cannot be assigned to A without changing its type.

In-place matrix-matrix products are not allowed. (Except when c is a 1 by 1 dense matrix, in which case Ax=c is
interpreted as a scalar product Ax=c[0].)

As for dense operations, the in-place sparse operations do not return a new matrix but modify the existing object A.

6.4 Indexing and Slicing
Sparse matrices can be indexed the same way as dense matrices (see section[2.4]).

>>> from cvxopt.base import spmatrix

>>> A = spmatrix([0,2,-1,2,-2,1], [0,1,2,0,2,1], [0,0,0,1,1,2])
>>> print A[:, [0,1]]

[ 0.00e+00 2.00e+00]

[ 2.00e+00 0 ]

[-1.00e+00 -2.00e+00]

>>> B = spmatrix([0,2%13,0,-21, [1,2,1,2], [0,0,1,1,])

>>> print B[-2:,-2:]

[ 0.00e+00-3j0.00e+00 0.00e+00-30.00e+00]

[ 0.00e+00+32.00e+00 -2.00e+00-30.00e+00]

An indexed sparse matrix A[I] or A[I, J] can also be the target of an assignment. The righthand side of the
assignment can be a scalar (a Python integer, float, or complex, or a 1 by 1 dense matrix), a sequence of
numbers, or a sparse or dense matrix of compatible dimensions. If the righthand side is a scalar, it is treated as a
dense matrix of the same size as the lefthand side and with all its entries equal to the scalar. If the righthand side is a
sequence of numbers, they are treated as the elements of a dense matrix in column-major order.

We continue the example above.

>>> C = spmatrix([10,-20,30], [0,2,11, [0,0,11)
>>> A[:,0] = C[:,0]
>>> print A
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[ 1.00e+01 2.00e+00 0 ]
[ 0 0 1.00e+00]
[-2.00e+01 -2.00e+00 0 ]
>>> D = matrix(range(6), ( )
>>> A[:,0] = DJ[:,0]

>>> print A

[ 0.00e+00 2.00e+00 0 ]
[ 1.00e+00 0 1.00e+00]
[ 2.00e+00 -2.00e+00 0 ]

>>> A[:,0] =1
>>> print A

[ 1.00e+00 2.00e+00 0 ]
[ 1.00e+00 0 1.00e+00]
[ 1.00e+00 -2.00e+00 0 ]

>>> A[:,0] =0
>>> print A

[ 0.00e+00 2.00e+00 0 ]
[ 0.00e+00 0 1.00e+00]
[ 0.00e+00 -2.00e+00 0 ]

6.5 Built-In Functions

The functions described in the table of section [2.5]also work with sparse matrix arguments. The difference is that for
a sparse matrix only the nonzero entries are considered.
len(x)

If x is a spmat rix, returns the number of nonzero entries in x.
bool([x])
If x is a spmatrix, returns False if x has at least one nonzero entry; False otherwise.
max(x)
If x is a spmatrix, returns the maximum nonzero entry of x.
min(x)
If x is a spmatrix, returns the minimum nonzero entry of x.
abs(x)

If x is a spmat rix, returns a sparse matrix with the absolute value of the elements of x and the same sparsity
pattern.

sum(x[, start=0.0])
If x is a spmat rix, returns the sum of start and the elements of x.

The functions 1ist (), tuple (), zip (), map (), filter () also take sparse matrix arguments. They work as
for dense matrices, again with the difference that only the nonzero entries are considered.
In the following example we square the entries of the matrix (6.2).

>>> A spmatrix([(2,1,2,2,1,3,41, [1,2,0,2,3,0,21,
>>> B = spmatrix (map(lambda x: x*%x2, A), A.I, A.J)
>>> print B

(0,0,1,1,2,3,3])
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[ 0 4.00e+00 0 9.00e+00]
[ 4.00e+00 0 0 0 ]
[ 1.00e+00 4.00e+00 0 1.60e+01]
[ 0 0 1.00e+00 0 ]

The expression ”x in A” returns True if a nonzero entry of A is equal to x and False otherwise.

6.6 Sparse BLAS Functions

The cvxopt . base module includes a few arithmetic functions that extend functions from cvxopt .blas to sparse
matrices. These functions are faster than the corresponding operations implemented using the overloaded arithmetic
described in section[6.3] They also work in-place, i.e., they modify their arguments without creating new objects.
gemv(A, x, y[, trans='N’[, alpha=1.0[, beta=0.0]]])

Matrix-vector product with a general dense or sparse matrix:
y = aAxr+py (trans = 'N'), y:=aATz4+By (trans ='T’), y:=aAPz+py (trans ='C).

If A is a dense matrix, this is identical to blas.gemv (). If A is sparse, the result is the same as when
blas.gemv () iscalled withmatrix (A) as argument, however, without explicitly converting A to dense.

symv(A, x, y[, uplo="L’[, alpha=1.0[, beta=0.0]]])
Matrix-vector product with a dense or sparse real symmetric matrix:
y = oAz + Py.

If A is a dense matrix, this is identical to blas.symv (). If A is sparse, the result is the same as when
blas.symv () iscalled withmatrix (A) as argument, however, without explicitly converting A to dense.

gemm(A, B, C[, transA='N’[, transB='N’[, alpha=1.0[, beta=0.0[, partial=Falsel]l]ll])
Matrix-matrix product of two general sparse or dense matrices:

C := aop(A)op(B) + sC

where
A transA = 'N’ B transB = ‘N’
op(A) =4 AT transA ='T’ op(B) =< BT transB='T’
AT transA ='C/ B transB ='C’.

If A, B and C are dense matrices, this is identical to blas.gemm (), described in section and the argument
partial isignored.

If A and/or B are sparse and C is dense, the result is the same as whenblas.gemm () iscalled withmatrix (A)
and matrix (B) as arguments, without explicitly converting A and B to dense. The argument partial isig-
nored.

If C is a sparse matrix, the matrix-matrix product in the definition of blas.gemm () is computed, but as a
sparse matrix. If partial is False, the result is stored in C, and the sparsity pattern of C is modified if
necessary. If partial is True, the operation only updates the nonzero elements in C, even if the sparsity
pattern of C differs from that of the matrix product.

syrk(2, C[, uplo='L’[, trans='N’[, alpha=1.0[, beta=0.0[, partial=Falsel]l]l])
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Rank-k update of a sparse or dense real or complex symmetric matrix:
C :=aAA” + 3C  (trans = 'N'), C:=aATA+3C (trans ='T'),

If A and C are dense, this is identical to blas.syrk (), described in section@ and the argument partial
is ignored.

If A is sparse and C is dense, the result is the same as when blas.syrk () is called with matrix (A) as
argument, without explicitly converting A to dense. The argument partial is ignored.

If C is sparse, the product in the definition of blas.syrk () is computed, but as a sparse matrix. If partial
is False, the result is stored in C, and the sparsity pattern of C is modified if necessary. If partial is True,
the operation only updates the nonzero elements in C, even if the sparsity pattern of C differs from that of the
matrix product.

In the following example, we first compute

>>>
>>>
>>>
>>>
>>>
>>>

[
[
[

4.

2.

C=A"B, A=

e )
O = O =
O O = O
&
Il
N O N O
S w o
S o N O

from cvxopt.base import spmatrix, gemm

A = spmatrix(1, [1,3,0,2,1]1, [0,0,1,1,21)

B = spmatrix([2,2,-1,3,21, I11,3,0,2,1]1, [0,0,1,1,21)
C = spmatrix([]1, [1, [], size=(3,3))

gemm (A, B, C, transA="T’)

print C

00e+00 0 2.00e+00]
0 2.00e+00 0 ]
00e+00 0 2.00e+00]

Now suppose we want to replace C with

01 0
o 130 -2
c=A"D, D=|. |

4.0 0

The new matrix has the same sparsity pattern as C, so we can use gemm () with the partial=True option. This
saves time in large sparse matrix multiplications when the sparsity pattern of the result is known beforehand.

>>>
>>>
>>>

[
[
[ 3

7.

D = spmatrix([3,4,1,1,-21, [1,3,0,2,1]1, [0,0,1,1,21)
gemm (A, D, C, transA=’'T’, partial=True)

print C

00e+00 0 -2.00e+00]
0 2.00e+00 0 ]

.00e+00 0 -2.00e+00]
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Chapter 7

Sparse Linear Equations

In this section we describe routines for solving sparse sets of linear equations.

A real symmetric or complex Hermitian sparse matrix is stored as an spmatrix object X of size (n, n) and an
additional character argument uplo with possible values ' L” and ' U’. If uplo is ' L”, the lower triangular part
of X contains the lower triangular part of the symmetric or Hermitian matrix, and the upper triangular matrix of X is
ignored. If uplois ' U’, the upper triangular part of X contains the upper triangular part of the matrix, and the lower
triangular matrix of X is ignored.

A general sparse square matrix of order n is represented by an spmat rix object of size (n, n).

Dense matrices, which appear as righthand sides of equations, are stored using the same conventions as in the BLAS
and LAPACK modules.

7.1 Matrix Orderings (cvxopt .amd)

CVXOPT includes an interface to the AMD library for computing approximate minimum degree orderings of sparse
matrices.
See also:

e AMD code, documentation, copyright and license[]

e P. R. Amestoy, T. A. Davis, I. S. Duff, Algorithm 837: AMD, An Approximate Minimum Degree Ordering
Algorithm, ACM Transactions on Mathematical Software, 30(3), 381-388, 2004.

order(A[, uplo='L1’])

Computes the approximate mimimum degree ordering of a symmetric sparse matrix A. The ordering is returned
as an integer dense matrix with length equal to the order of A. Its entries specify a permutation that reduces fill-
in during the Cholesky factorization. More precisely, if p = order (A), then A[p, p] has sparser Cholesky
factors than A.

As an example we consider the matrix

10 0 3 0
0 5 0 -2
3 0 5 0
0 -2 0 2

>>> from cvxopt.base import spmatrix
>>> from cvxopt import amd
>>> A = spmatrix([1l0,3,5,-2,5,2], [0,2,1,2,2,31, [0,0,1,1,2,3])

Ihttp://www.cise.ufl.edu/research/sparse/amd
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>>> P = amd.order (A7)
>>> print P

7.2 General Linear Equations (cvxopt . umfpack)

The module cvxopt . umfpack includes four functions for solving sparse non-symmetric sets of linear equations.
They call routines from the UMFPACK library, with all control options set to the default values described in the
UMFPACK user guide.

See also:

e UMFPACK code, documentation, copyright and licenseE]

e T. A. Davis, Algorithm 832: UMFPACK - an unsymmetric-pattern multifrontal method with a column pre-
ordering strategy, ACM Transactions on Mathematical Software, 30(2), 196-199, 2004.

linsolve(2, B[, trans='N’])
Solves a sparse set of linear equations
AX =B (trans = 'N'), ATX =B (trans ='T'), A¥X =DB (trans='C"),

where A is a sparse matrix and B is a dense matrix of the same type ( d’ or ’ z’) as A. On exit B contains the
solution. Raises an ArithmeticError exception if the coefficient matrix is singular.

In the following example we solve an equation with coefficient matrix

2 3 00 0
3 0 40 6

A=]0 -1 -3 2 0 (7.1)
0 0 100
0 4 0 1

>>> from cvxopt.base import spmatrix, matrix
>>> from cvxopt import umfpack

>>> VvV = [2,3, 3,-1,4, 4,-3,1,2, 2, 6,1]
>>> 1= [0,1, 0, 2,4, 1, 2,3,4, 2, 1,4]
>>>J = [0,0, 1, 1,1, 2, 2,2,2, 3, 4,4]
>>> A = spmatrix(V,I,J)

>>> B = matrix (1.0, (5,1))

>>> umfpack.linsolve (A, B)
>>> print B

.79%9e-01]

.26e-02]
.00e+00]
.97e+00]
.89%e-01]

<~ = B 01U

[
[_
[
[
[_

The function umfpack.linsolve () is equivalent to the following three functions called in sequence.
symbolic(2)

Zhttp://www.cise.ufl.edu/research/sparse/umfpack
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Reorders the columns of A to reduce fill-in and performs a symbolic LU factorization. A is a sparse, possi-
bly rectangular, matrix. Returns the symbolic factorization as an opaque C object that can be passed on to
umfpack.numeric ().

numeric(2, F)

Performs a numeric LU factorization of a sparse, possibly rectangular, matrix A. The argument F is the symbolic
factorization computed by umfpack . symbolic () applied to the matrix A, or another sparse matrix with the
same sparsity pattern, dimensions, and type. The numeric factorization is returned as an opaque C object that
that can be passed on to umfpack.solve (). Raises an ArithmeticError if the matrix is singular.

solve(A, F, B[, trans='N’])
Solves a set of linear equations
AX =B (trans ='N’), ATX =B (trans ='T’), APX =B (trans ='C'),

where A is a sparse matrix and B is a dense matrix of the same type as A. The argument F is a numeric factor-
ization computed by umfpack .numeric (). On exit B is overwritten by the solution.

These separate functions are useful for solving several sets of linear equations with the same coefficient matrix and
different righthand sides, or with coefficient matrices that share the same sparsity pattern. The symbolic factorization
depends only on the sparsity pattern of the matrix, and not on the numerical values of the nonzero coefficients. The
numerical factorization on the other hand depends on the sparsity pattern of the matrix and on its the numerical values.
As an example, suppose A is the matrix and

4 3 000
30 40 6

B=|0 -1 -3 2 0|,
0 0 100
0 4 2 0 2

which differs from A in its first and last entries. The following code computes
zr=ATB 1A 11,

>>> from cvxopt.base import spmatrix, matrix
>>> from cvxopt import umfpack

>>> VA = [2,3, 3,-1,4, 4,-3,1,2, 2, 6,1]
>>> VB = [4,3, 3,-1,4, 4,-3,1,2, 2, 6,2]
>> 1= 1[0,1, 0, 2,4, 1, 2,3,4, 2, 1,4]
>>>J = [0,0, 1, 1,1, 2, 2,2,2, 3, 4,4]
>>> A = spmatrix(VA, I, J)

>>> B = spmatrix(VB, I, J)

>>> x = matrix (1.0, (5,1))

>>> Fs = umfpack.symbolic (A)

>>> FA = umfpack.numeric (A, Fs)

>>> FB = umfpack.numeric (B, Fs)

>>> umfpack.solve (A, FA, x)

>>> umfpack.solve (B, FB, x)

>>> umfpack.solve (A, FA, x, trans='T')
>>> print x

[ 5.81e-01]

.37e-01]
.63e+00]
.07e+00]
.31e-01]

= oo = N
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7.3 Positive Definite Linear Equations (cvxopt .cholmod)

cvxopt .cholmod is an interface to the Cholesky factorization routines of the CHOLMOD package. It includes
functions for Cholesky factorization of sparse positive definite matrices, and for solving sparse sets of linear equations
with positive definite matrices. The routines can also be used for computing LDLT (or LDL) factorizations of
symmetric indefinite matrices (with L unit lower-triangular and D diagonal and nonsingular) if such a factorization
exists.

See also: CHOLMOD code, documentation, copyright and licenseﬂ

linsolve(2, B[, p=None[, uplo='L’]])

Solves
AX =B

with A sparse and real symmetric or complex Hermitian. B is a dense matrix of the same type as A. On exit it
is overwritten with the solution. The argument p is an integer matrix with length equal to the order of A, and
specifies an optional reordering of A. If p is not specified, CHOLMOD used a reordering from the AMD library.
Raises an ArithmeticError if the factorization does not exist.

As an example, we solve

10 0 3 0 0 4
0 5 0 -2 1 5
3 0 5 0 X= 2 6 (7:2)
0 -2 0 2 37

>>> from cvxopt.base import matrix, spmatrix

>>> from cvxopt import cholmod

>>> A spmatrix((10,3, 5,-2, 5, 21, [0,2, 1,3, 2, 31, [0,0, 1,1, 2, 31)
>>> X = matrix(range(8), (4,2), ’'d")

>>> cholmod.linsolve (A, X)

>>> print X

[-1.46e-01 4.88e-02]
[ 1.33e+00 4.00e+00]
[ 4.88e-01 1.17e+00]
[ 2.83e+00 7.50e+00]

splinsolve(2, B[, p=None[, uplo='L’]])

Similar to 1insolve () except that B is a sparse matrix and that the solution is returned as an output argument
(as a new sparse matrix). B is not modified.

The following code computes the inverse of the coefficient matrix in (7.2)) as a sparse matrix.

>>> X = cholmod.splinsolve (A, spmatrix (1.0, range (4),range(4)))
>>> print X

[ 1.22e-01 0 -7.32e-02 0 ]
[ 0 3.33e-01 0 3.33e-01]
[-7.32e-02 0 2.44e-01 0 ]
[ 0 3.33e-01 0 8.33e-01]

The functions 1insolve () and splinsolve () are equivalent to symbolic () and numeric () called in se-
quence, followed by solve (), respectively, spsolve ().
symbolic(A[, p=None[, uplo='L’]])

3http://www.cise.ufl.edu/research/sparse/cholmod
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Performs a symbolic analysis of a sparse real symmetric or complex Hermitian matrix A for one of the two
factorizations:
PAPT = LLT, PAPT = LL%, (7.3)

and
PAPT = LDLT, PAPT = LDLH, (7.4)

where P is a permutation matrix, L is lower triangular (unit lower triangular in the second factorization), and D
is nonsingular diagonal. The type of factorization depends on the val