
Debian Policy Manual
The Debian Policy Mailing List

version 3.6.1.1, 2004-06-25

Abstract

This manual describes the policy requirements for the Debian GNU/Linux distribution. This in-
cludes the structure and contents of the Debian archive and several design issues of the operating
system, as well as technical requirements that each package must satisfy to be included in the
distribution.

Copyright Notice

Copyright © 1996,1997,1998 Ian Jackson and Christian Schwarz.

This manual is free software; you may redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation; either version 2, or
(at your option) any later version.

This is distributed in the hope that it will be useful, but without any warranty; without even the
implied warranty of merchantability or fitness for a particular purpose. See the GNU General
Public License for more details.

A copy of the GNU General Public License is available as /usr/share/common-licenses/GPL
in the Debian GNU/Linux distribution or on the World Wide Web at the GNU General Public
Licence (http://www.gnu.org/copyleft/gpl.html). You can also obtain it by writing to
the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

http://www.gnu.org/copyleft/gpl.html

i

Contents

1 About this manual 1

1.1 Scope . 1

1.2 New versions of this document . 2

1.3 Authors and Maintainers . 2

1.4 Related documents . 3

2 The Debian Archive 5

2.1 The Debian Free Software Guidelines . 5

2.2 Sections . 6

2.2.1 The main section . 6

2.2.2 The contrib section . 7

2.2.3 The non-free section . 7

2.2.4 The non-US sections . 7

2.3 Copyright considerations . 8

2.4 Subsections . 9

2.5 Priorities . 9

3 Binary packages 11

3.1 The package name . 11

3.2 The version of a package . 11

3.2.1 Version numbers based on dates . 12

3.3 The maintainer of a package . 12

CONTENTS ii

3.4 The description of a package . 12

3.4.1 The single line synopsis . 13

3.4.2 The extended description . 13

3.5 Dependencies . 13

3.6 Virtual packages . 14

3.7 Base system . 14

3.8 Essential packages . 15

3.9 Tasks . 15

3.10 Maintainer Scripts . 15

3.10.1 Prompting in maintainer scripts . 16

4 Source packages 19

4.1 Standards conformance . 19

4.2 Package relationships . 19

4.3 Changes to the upstream sources . 20

4.4 Debian changelog: debian/changelog . 21

4.4.1 Alternative changelog formats . 22

4.5 Error trapping in makefiles . 23

4.6 Time Stamps . 23

4.7 Restrictions on objects in source packages . 23

4.8 Main building script: debian/rules . 23

4.9 Variable substitutions: debian/substvars . 26

4.10 Generated files list: debian/files . 26

5 Control files and their fields 29

5.1 Syntax of control files . 29

5.2 Source package control files – debian/control . 30

5.3 Binary package control files – DEBIAN/control . 31

5.4 Debian source control files – .dsc . 31

CONTENTS iii

5.5 Debian changes files – .changes . 32

5.6 List of fields . 32

5.6.1 Source . 32

5.6.2 Maintainer . 33

5.6.3 Changed-By . 33

5.6.4 Section . 33

5.6.5 Priority . 33

5.6.6 Package . 33

5.6.7 Architecture . 34

5.6.8 Essential . 34

5.6.9 Package interrelationship fields: Depends , Pre-Depends , Recommends,
Suggests , Conflicts , Provides , Replaces , Enhances 35

5.6.10 Standards-Version . 35

5.6.11 Version . 35

5.6.12 Description . 37

5.6.13 Distribution . 38

5.6.14 Date . 38

5.6.15 Format . 38

5.6.16 Urgency . 38

5.6.17 Changes . 39

5.6.18 Binary . 39

5.6.19 Installed-Size . 39

5.6.20 Files . 40

5.6.21 Closes . 40

5.7 User-defined fields . 40

6 Package maintainer scripts and installation procedure 43

6.1 Introduction to package maintainer scripts . 43

6.2 Maintainer scripts Idempotency . 44

CONTENTS iv

6.3 Controlling terminal for maintainer scripts . 44

6.4 Summary of ways maintainer scripts are called . 44

6.5 Details of unpack phase of installation or upgrade . 45

6.6 Details of configuration . 48

6.7 Details of removal and/or configuration purging . 48

7 Declaring relationships between packages 51

7.1 Syntax of relationship fields . 51

7.2 Binary Dependencies - Depends , Recommends, Suggests , Enhances ,
Pre-Depends . 52

7.3 Conflicting binary packages - Conflicts . 54

7.4 Virtual packages - Provides . 55

7.5 Overwriting files and replacing packages - Replaces 55

7.5.1 Overwriting files in other packages . 56

7.5.2 Replacing whole packages, forcing their removal 56

7.6 Relationships between source and binary packages - Build-Depends ,
Build-Depends-Indep , Build-Conflicts , Build-Conflicts-Indep 57

8 Shared libraries 59

8.1 Run-time shared libraries . 59

8.1.1 ldconfig . 60

8.2 Run-time support programs . 61

8.3 Static libraries . 61

8.4 Development files . 61

8.5 Dependencies between the packages of the same library 62

8.6 Dependencies between the library and other packages - the shlibs system 62

8.6.1 The shlibs files present on the system . 63

8.6.2 How to use dpkg-shlibdeps and the shlibs files 64

8.6.3 The shlibs File Format . 64

8.6.4 Providing a shlibs file . 65

8.6.5 Writing the debian/shlibs.local file . 65

CONTENTS v

9 The Operating System 67

9.1 Filesystem hierarchy . 67

9.1.1 Filesystem Structure . 67

9.1.2 Site-specific programs . 67

9.1.3 The system-wide mail directory . 68

9.2 Users and groups . 69

9.2.1 Introduction . 69

9.2.2 UID and GID classes . 69

9.3 System run levels and init.d scripts . 70

9.3.1 Introduction . 70

9.3.2 Writing the scripts . 71

9.3.3 Interfacing with the initscript system . 72

9.3.4 Boot-time initialization . 74

9.3.5 Example . 74

9.4 Console messages from init.d scripts . 76

9.5 Cron jobs . 79

9.6 Menus . 79

9.7 Multimedia handlers . 80

9.8 Keyboard configuration . 80

9.9 Environment variables . 82

10 Files 83

10.1 Binaries . 83

10.2 Libraries . 84

10.3 Shared libraries . 86

10.4 Scripts . 86

10.5 Symbolic links . 87

10.6 Device files . 87

10.7 Configuration files . 88

CONTENTS vi

10.7.1 Definitions . 88

10.7.2 Location . 88

10.7.3 Behavior . 88

10.7.4 Sharing configuration files . 89

10.7.5 User configuration files (”dotfiles“) . 90

10.8 Log files . 91

10.9 Permissions and owners . 91

10.9.1 The use of dpkg-statoverride . 93

11 Customized programs 95

11.1 Architecture specification strings . 95

11.2 Daemons . 95

11.3 Using pseudo-ttys and modifying wtmp, utmp and lastlog 96

11.4 Editors and pagers . 96

11.5 Web servers and applications . 97

11.6 Mail transport, delivery and user agents . 98

11.7 News system configuration . 99

11.8 Programs for the X Window System . 99

11.8.1 Providing X support and package priorities . 99

11.8.2 Packages providing an X server . 100

11.8.3 Packages providing a terminal emulator . 100

11.8.4 Packages providing a window manager . 100

11.8.5 Packages providing fonts . 101

11.8.6 Application defaults files . 103

11.8.7 Installation directory issues . 103

11.8.8 The OSF/Motif and OpenMotif libraries . 104

11.9 Perl programs and modules . 104

11.10Emacs lisp programs . 104

11.11Games . 105

CONTENTS vii

12 Documentation 107

12.1 Manual pages . 107

12.2 Info documents . 108

12.3 Additional documentation . 108

12.4 Preferred documentation formats . 109

12.5 Copyright information . 109

12.6 Examples . 110

12.7 Changelog files . 110

A Introduction and scope of these appendices 113

B Binary packages (from old Packaging Manual) 115

B.1 Creating package files - dpkg-deb . 115

B.2 Package control information files . 116

B.3 The main control information file: control . 117

B.4 Time Stamps . 117

C Source packages (from old Packaging Manual) 119

C.1 Tools for processing source packages . 119

C.1.1 dpkg-source - packs and unpacks Debian source packages 119

C.1.2 dpkg-buildpackage - overall package-building control script 120

C.1.3 dpkg-gencontrol - generates binary package control files 120

C.1.4 dpkg-shlibdeps - calculates shared library dependencies 121

C.1.5 dpkg-distaddfile - adds a file to debian/files 122

C.1.6 dpkg-genchanges - generates a .changes upload control file 122

C.1.7 dpkg-parsechangelog - produces parsed representation of a changelog . 123

C.1.8 dpkg-architecture - information about the build and host system 123

C.2 The Debianised source tree . 123

C.2.1 debian/rules - the main building script . 123

C.2.2 debian/changelog . 123

CONTENTS viii

C.2.3 debian/substvars and variable substitutions 125

C.2.4 debian/files . 125

C.2.5 debian/tmp . 125

C.3 Source packages as archives . 126

C.4 Unpacking a Debian source package without dpkg-source 126

C.4.1 Restrictions on objects in source packages . 127

D Control files and their fields (from old Packaging Manual) 129

D.1 Syntax of control files . 129

D.2 List of fields . 129

D.2.1 Filename and MSDOS-Filename . 129

D.2.2 Size and MD5sum . 130

D.2.3 Status . 130

D.2.4 Config-Version . 130

D.2.5 Conffiles . 130

D.2.6 Obsolete fields . 130

E Configuration file handling (from old Packaging Manual) 131

E.1 Automatic handling of configuration files by dpkg . 131

E.2 Fully-featured maintainer script configuration handling 132

F Alternative versions of an interface - update-alternatives (from old Packaging
Manual) 135

G Diversions - overriding a package’s version of a file (from old Packaging Manual) 137

1

Chapter 1

About this manual

1.1 Scope

This manual describes the policy requirements for the Debian GNU/Linux distribution. This in-
cludes the structure and contents of the Debian archive and several design issues of the operating
system, as well as technical requirements that each package must satisfy to be included in the
distribution.

This manual also describes Debian policy as it relates to creating Debian packages. It is not a
tutorial on how to build packages, nor is it exhaustive where it comes to describing the behavior
of the packaging system. Instead, this manual attempts to define the interface to the package
management system that the developers have to be conversant with.1

The footnotes present in this manual are merely informative, and are not part of Debian policy
itself.

The appendices to this manual are not necessarily normative, either. Please see ‘Introduction and
scope of these appendices’ on page 113 for more information.

In the normative part of this manual, the words must, should and may, and the adjectives required,
recommended and optional, are used to distinguish the significance of the various guidelines in this
policy document. Packages that do not conform to the guidelines denoted by must (or required)

1Informally, the criteria used for inclusion is that the material meet one of the following requirements:
Standard interfaces The material presented represents an interface to the packaging system that is mandated for use,

and is used by, a significant number of packages, and therefore should not be changed without peer review.
Package maintainers can then rely on this interfaces not changing, and the package management software au-
thors need to ensure compatibility with these interface definitions. (Control file and changelog file formats are
examples.)

Chosen Convention If there are a number of technically viable choices that can be made, but one needs to select one
of these options for inter-operability. The version number format is one example.

Please note that these are not mutually exclusive; selected conventions often become parts of standard interfaces.

Chapter 1. About this manual 2

will generally not be considered acceptable for the Debian distribution. Non-conformance with
guidelines denoted by should (or recommended) will generally be considered a bug, but will not
necessarily render a package unsuitable for distribution. Guidelines denoted by may (or optional)
are truly optional and adherence is left to the maintainer’s discretion.

These classifications are roughly equivalent to the bug severities serious (for must or required dir-
ective violations), minor, normal or important (for should or recommended directive violations) and
wishlist (for optional items). 2

Much of the information presented in this manual will be useful even when building a package
which is to be distributed in some other way or is intended for local use only.

1.2 New versions of this document

This manual is distributed via the Debian package debian-policy (http://packages.
debian.org/debian-policy) .

The current version of this document is also available from the Debian web mirrors
at /doc/debian-policy/ (http://www.debian.org/doc/debian-policy/) . Also
available from the same directory are several other formats: policy.html.tar.gz ,
policy.pdf.gz and policy.ps.gz .

The debian-policy package also includes the file upgrading-checklist.txt which indic-
ates policy changes between versions of this document.

1.3 Authors and Maintainers

Originally called “Debian GNU/Linux Policy Manual”, this manual was initially written in 1996
by Ian Jackson. It was revised on November 27th, 1996 by David A. Morris. Christian Schwarz ad-
ded new sections on March 15th, 1997, and reworked/restructured it in April-July 1997. Christoph
Lameter contributed the “Web Standard”. Julian Gilbey largely restructured it in 2001.

Since September 1998, the responsibility for the contents of this document lies on the debian-
policy mailing list (mailto:debian-policy@lists.debian.org). Proposals are discussed
there and inserted into policy after a certain consensus is established. The actual editing is done
by a group of maintainers that have no editorial powers. These are the current maintainers:

1 Julian Gilbey

2 Branden Robinson
2Compare RFC 2119. Note, however, that these words are used in a different way in this document.

http://packages.debian.org/debian-policy
http://packages.debian.org/debian-policy
http://www.debian.org/doc/debian-policy/
mailto:debian-policy@lists.debian.org

Chapter 1. About this manual 3

3 Josip Rodin

4 Manoj Srivastava

While the authors of this document have tried hard to avoid typos and other errors, these do still
occur. If you discover an error in this manual or if you want to give any comments, suggestions,
or criticisms please send an email to the Debian Policy List, <debian-policy@lists.debian.
org> , or submit a bug report against the debian-policy package.

Please do not try to reach the individual authors or maintainers of the Policy Manual regarding
changes to the Policy.

1.4 Related documents

There are several other documents other than this Policy Manual that are necessary to fully un-
derstand some Debian policies and procedures.

The external “sub-policy” documents are referred to in:
• ‘Filesystem Structure’ on page 67
• ‘Virtual packages’ on page 14
• ‘Menus’ on page 79
• ‘Multimedia handlers’ on page 80
• ‘Perl programs and modules’ on page 104
• ‘Prompting in maintainer scripts’ on page 16
• ‘Emacs lisp programs’ on page 104

In addition to those, which carry the weight of policy, there is the Debian Developer’s Reference.
This document describes procedures and resources for Debian developers, but it is not normative;
rather, it includes things that don’t belong into the Policy, such as best practices for developers.

The Developer’s Reference is available in the developers-reference package. It’s also
available from the Debian web mirrors at /doc/developers-reference/ (http://www.
debian.org/doc/developers-reference/) .

http://www.debian.org/doc/developers-reference/
http://www.debian.org/doc/developers-reference/

Chapter 1. About this manual 4

5

Chapter 2

The Debian Archive

The Debian GNU/Linux system is maintained and distributed as a collection of packages. Since
there are so many of them (currently well over 6000), they are split into sections and given priorities
to simplify the handling of them.

The effort of the Debian project is to build a free operating system, but not every package we want
to make accessible is free in our sense (see the Debian Free Software Guidelines, below), or may be
imported/exported without restrictions. Thus, the archive is split into the sections based on their
licenses and other restrictions.

The aims of this are:
• to allow us to make as much software available as we can
• to allow us to encourage everyone to write free software, and
• to allow us to make it easy for people to produce CD-ROMs of our system without violating

any licenses, import/export restrictions, or any other laws.

The main and the non-US/main sections together form the Debian GNU/Linux distribution.

Packages in the other sections are not considered to be part of the Debian distribution, although
we support their use and provide infrastructure for them (such as our bug-tracking system and
mailing lists). This Debian Policy Manual applies to these packages as well.

2.1 The Debian Free Software Guidelines

The Debian Free Software Guidelines (DFSG) form our definition of “free software”. These are:

Free Redistribution The license of a Debian component may not restrict any party from selling or
giving away the software as a component of an aggregate software distribution containing
programs from several different sources. The license may not require a royalty or other fee
for such sale.

Chapter 2. The Debian Archive 6

Source Code The program must include source code, and must allow distribution in source code
as well as compiled form.

Derived Works The license must allow modifications and derived works, and must allow them
to be distributed under the same terms as the license of the original software.

Integrity of The Author’s Source Code The license may restrict source-code from being distrib-
uted in modified form only if the license allows the distribution of “patch files” with the
source code for the purpose of modifying the program at build time. The license must ex-
plicitly permit distribution of software built from modified source code. The license may
require derived works to carry a different name or version number from the original soft-
ware. (This is a compromise. The Debian Project encourages all authors to not restrict any
files, source or binary, from being modified.)

No Discrimination Against Persons or Groups The license must not discriminate against any
person or group of persons.

No Discrimination Against Fields of Endeavor The license must not restrict anyone from mak-
ing use of the program in a specific field of endeavor. For example, it may not restrict the
program from being used in a business, or from being used for genetic research.

Distribution of License The rights attached to the program must apply to all to whom the pro-
gram is redistributed without the need for execution of an additional license by those parties.

License Must Not Be Specific to Debian The rights attached to the program must not depend on
the program’s being part of a Debian system. If the program is extracted from Debian and
used or distributed without Debian but otherwise within the terms of the program’s license,
all parties to whom the program is redistributed must have the same rights as those that are
granted in conjunction with the Debian system.

License Must Not Contaminate Other Software The license must not place restrictions on other
software that is distributed along with the licensed software. For example, the license must
not insist that all other programs distributed on the same medium must be free software.

Example Licenses The “GPL,” “BSD,” and “Artistic” licenses are examples of licenses that we
consider free.

2.2 Sections

2.2.1 The main section

Every package in main and non-US/main must comply with the DFSG (Debian Free Software
Guidelines).

In addition, the packages in main

Chapter 2. The Debian Archive 7

• must not require a package outside of main for compilation or execution (thus, the package
must not declare a “Depends”, “Recommends”, or “Build-Depends” relationship on a non-
main package),

• must not be so buggy that we refuse to support them, and
• must meet all policy requirements presented in this manual.

Similarly, the packages in non-US/main
• must not require a package outside of main or non-US/main for compilation or execution,
• must not be so buggy that we refuse to support them,
• must meet all policy requirements presented in this manual.

2.2.2 The contrib section

Every package in contrib and non-US/contrib must comply with the DFSG.

In addition, the packages in contrib and non-US/contrib
• must not be so buggy that we refuse to support them, and
• must meet all policy requirements presented in this manual.

Furthermore, packages in contrib must not require a package in a non-US section for compilation
or execution.

Examples of packages which would be included in contrib or non-US/contrib are:
• free packages which require contrib, non-free packages or packages which are not in our

archive at all for compilation or execution, and
• wrapper packages or other sorts of free accessories for non-free programs.

2.2.3 The non-free section

Packages must be placed in non-free or non-US/non-free if they are not compliant with the DFSG or
are encumbered by patents or other legal issues that make their distribution problematic.

In addition, the packages in non-free and non-US/non-free
• must not be so buggy that we refuse to support them, and
• must meet all policy requirements presented in this manual that it is possible for them to

meet. 1

2.2.4 The non-US sections

Non-free programs with cryptographic program code need to be stored on the non-us server be-
cause of export restrictions of the U.S.

1It is possible that there are policy requirements which the package is unable to meet, for example, if the source is
unavailable. These situations will need to be handled on a case-by-case basis.

Chapter 2. The Debian Archive 8

Programs which use patented algorithms that have a restricted license also need to be stored on
“non-us”, since that is located in a country where it is not allowed to patent algorithms.

A package depends on another package which is distributed via the non-us server has to be stored
on the non-us server as well.

2.3 Copyright considerations

Every package must be accompanied by a verbatim copy of its copyright and distribution license
in the file /usr/share/doc/ package /copyright (see ‘Copyright information’ on page 109
for further details).

We reserve the right to restrict files from being included anywhere in our archives if
• their use or distribution would break a law,
• there is an ethical conflict in their distribution or use,
• we would have to sign a license for them, or
• their distribution would conflict with other project policies.

Programs whose authors encourage the user to make donations are fine for the main distribu-
tion, provided that the authors do not claim that not donating is immoral, unethical, illegal or
something similar; in such a case they must go in non-free.

Packages whose copyright permission notices (or patent problems) do not even allow redistribu-
tion of binaries only, and where no special permission has been obtained, must not be placed on
the Debian FTP site and its mirrors at all.

Note that under international copyright law (this applies in the United States, too), no distribution
or modification of a work is allowed without an explicit notice saying so. Therefore a program
without a copyright notice is copyrighted and you may not do anything to it without risking being
sued! Likewise if a program has a copyright notice but no statement saying what is permitted then
nothing is permitted.

Many authors are unaware of the problems that restrictive copyrights (or lack of copyright notices)
can cause for the users of their supposedly-free software. It is often worthwhile contacting such
authors diplomatically to ask them to modify their license terms. However, this can be a politically
difficult thing to do and you should ask for advice on the debian-legal mailing list first, as
explained below.

When in doubt about a copyright, send mail to <debian-legal@lists.debian.org> . Be
prepared to provide us with the copyright statement. Software covered by the GPL, public domain
software and BSD-like copyrights are safe; be wary of the phrases “commercial use prohibited”
and “distribution restricted”.

Chapter 2. The Debian Archive 9

2.4 Subsections

The packages in the sections main, contrib and non-free are grouped further into subsections to sim-
plify handling.

The section and subsection for each package should be specified in the package’s Section control
record (see ‘Section ’ on page 33). However, the maintainer of the Debian archive may override
this selection to ensure the consistency of the Debian distribution. The Section field should be
of the form:

• subsection if the package is in the main section,
• section/subsection if the package is in the contrib or non-free section, and
• non-US , non-US/contrib or non-US/non-free if the package is in non-US/main, non-

US/contrib or non-US/non-free respectively.

The Debian archive maintainers provide the authoritative list of subsections. At present, they are:
admin, base, comm, contrib, devel, doc, editors, electronics, embedded, games, gnome, graphics, hamradio,
interpreters, kde, libs, libdevel, mail, math, misc, net, news, non-US, non-free, oldlibs, otherosfs, perl,
python, science, shells, sound, tex, text, utils, web, x11.

2.5 Priorities

Each package should have a priority value, which is included in the package’s control record (see
‘Priority ’ on page 33). This information is used by the Debian package management tools to
separate high-priority packages from less-important packages.

The following priority levels are recognised by the Debian package management tools.

required Packages which are necessary for the proper functioning of the system. You must not
remove these packages or your system may become totally broken and you may not even be
able to use dpkg to put things back. Systems with only the required packages are probably
unusable, but they do have enough functionality to allow the sysadmin to boot and install
more software.

important Important programs, including those which one would expect to find on any Unix-
like system. If the expectation is that an experienced Unix person who found it missing
would say “What on earth is going on, where is foo ?”, it must be an important pack-
age.2 Other packages without which the system will not run well or be usable must also
have priority important . This does not include Emacs, the X Window System, TeX or any
other large applications. The important packages are just a bare minimum of commonly-
expected and necessary tools.

2This is an important criterion because we are trying to produce, amongst other things, a free Unix.

Chapter 2. The Debian Archive 10

standard These packages provide a reasonably small but not too limited character-mode sys-
tem. This is what will be installed by default if the user doesn’t select anything else. It
doesn’t include many large applications.

optional (In a sense everything that isn’t required is optional, but that’s not what is meant here.)
This is all the software that you might reasonably want to install if you didn’t know what
it was and don’t have specialized requirements. This is a much larger system and includes
the X Window System, a full TeX distribution, and many applications. Note that optional
packages should not conflict with each other.

extra This contains all packages that conflict with others with required, important, standard or
optional priorities, or are only likely to be useful if you already know what they are or have
specialised requirements.

Packages must not depend on packages with lower priority values (excluding build-time depend-
encies). In order to ensure this, the priorities of one or more packages may need to be adjusted.

11

Chapter 3

Binary packages

The Debian GNU/Linux distribution is based on the Debian package management system, called
dpkg . Thus, all packages in the Debian distribution must be provided in the .deb file format.

3.1 The package name

Every package must have a name that’s unique within the Debian archive.

The package name is included in the control field Package , the format of which is described in
‘Package ’ on page 33. The package name is also included as a part of the file name of the .deb
file.

3.2 The version of a package

Every package has a version number recorded in its Version control file field, described in
‘Version ’ on page 35.

The package management system imposes an ordering on version numbers, so that it can tell
whether packages are being up- or downgraded and so that package system front end applications
can tell whether a package it finds available is newer than the one installed on the system. The
version number format has the most significant parts (as far as comparison is concerned) at the
beginning.

If an upstream package has problematic version numbers they should be converted to a sane form
for use in the Version field.

Chapter 3. Binary packages 12

3.2.1 Version numbers based on dates

In general, Debian packages should use the same version numbers as the upstream sources.

However, in some cases where the upstream version number is based on a date (e.g., a develop-
ment “snapshot” release) the package management system cannot handle these version numbers
without epochs. For example, dpkg will consider “96May01” to be greater than “96Dec24”.

To prevent having to use epochs for every new upstream version, the date based portion of the
version number should be changed to the following format in such cases: “19960501”, “19961224”.
It is up to the maintainer whether he/she wants to bother the upstream maintainer to change the
version numbers upstream, too.

Note that other version formats based on dates which are parsed correctly by the package man-
agement system should not be changed.

Native Debian packages (i.e., packages which have been written especially for Debian) whose
version numbers include dates should always use the “YYYYMMDD” format.

3.3 The maintainer of a package

Every package must have a Debian maintainer (the maintainer may be one person or a group
of people reachable from a common email address, such as a mailing list). The maintainer is
responsible for ensuring that the package is placed in the appropriate distributions.

The maintainer must be specified in the Maintainer control field with their correct name and
a working email address. If one person maintains several packages, he/she should try to avoid
having different forms of their name and email address in the Maintainer fields of those pack-
ages.

The format of the Maintainer control field is described in ‘Maintainer ’ on page 33.

If the maintainer of a package quits from the Debian project, “Debian QA Group” <packages@
qa.debian.org> takes over the maintainership of the package until someone else volunteers
for that task. These packages are called orphaned packages.1

3.4 The description of a package

Every Debian package must have an extended description stored in the appropriate field of
the control record. The technical information about the format of the Description field is in
‘Description ’ on page 37.

1The detailed procedure for doing this gracefully can be found in the Debian Developer’s Reference, see ‘Related
documents’ on page 3.

Chapter 3. Binary packages 13

The description should describe the package (the program) to a user (system administrator) who
has never met it before so that they have enough information to decide whether they want to
install it. This description should not just be copied verbatim from the program’s documentation.

Put important information first, both in the synopsis and extended description. Sometimes only
the first part of the synopsis or of the description will be displayed. You can assume that there
will usually be a way to see the whole extended description.

The description should also give information about the significant dependencies and conflicts
between this package and others, so that the user knows why these dependencies and conflicts
have been declared.

Instructions for configuring or using the package should not be included (that is what installa-
tion scripts, manual pages, info files, etc., are for). Copyright statements and other administrivia
should not be included either (that is what the copyright file is for).

3.4.1 The single line synopsis

The single line synopsis should be kept brief - certainly under 80 characters.

Do not include the package name in the synopsis line. The display software knows how to display
this already, and you do not need to state it. Remember that in many situations the user may only
see the synopsis line - make it as informative as you can.

3.4.2 The extended description

Do not try to continue the single line synopsis into the extended description. This will not work
correctly when the full description is displayed, and makes no sense where only the summary (the
single line synopsis) is available.

The extended description should describe what the package does and how it relates to the rest of
the system (in terms of, for example, which subsystem it is which part of).

The description field needs to make sense to anyone, even people who have no idea about any of
the things the package deals with.2

3.5 Dependencies

Every package must specify the dependency information about other packages that are required
for the first to work correctly.

2The blurb that comes with a program in its announcements and/or READMEfiles is rarely suitable for use in a
description. It is usually aimed at people who are already in the community where the package is used.

Chapter 3. Binary packages 14

For example, a dependency entry must be provided for any shared libraries required by a
dynamically-linked executable binary in a package.

Packages are not required to declare any dependencies they have on other packages which are
marked Essential (see below), and should not do so unless they depend on a particular version
of that package.

Sometimes, a package requires another package to be installed and configured before it can be
installed. In this case, you must specify a Pre-Depends entry for the package.

You should not specify a Pre-Depends entry for a package before this has been discussed on the
debian-devel mailing list and a consensus about doing that has been reached.

The format of the package interrelationship control fields is described in ‘Declaring relationships
between packages’ on page 51.

3.6 Virtual packages

Sometimes, there are several packages which offer more-or-less the same functionality. In this case,
it’s useful to define a virtual package whose name describes that common functionality. (The virtual
packages only exist logically, not physically; that’s why they are called virtual.) The packages with
this particular function will then provide the virtual package. Thus, any other package requiring
that function can simply depend on the virtual package without having to specify all possible
packages individually.

All packages should use virtual package names where appropriate, and arrange to create new ones
if necessary. They should not use virtual package names (except privately, amongst a cooperating
group of packages) unless they have been agreed upon and appear in the list of virtual package
names. (See also ‘Virtual packages - Provides ’ on page 55)

The latest version of the authoritative list of virtual package names can be found
in the debian-policy package. It is also available from the Debian web mir-
rors at /doc/packaging-manuals/virtual-package-names-list.txt (http://www.
debian.org/doc/packaging-manuals/virtual-package-names-list.txt) .

The procedure for updating the list is described in the preface to the list.

3.7 Base system

The base system is a minimum subset of the Debian GNU/Linux system that is installed before
everything else on a new system. Thus, only very few packages are allowed to go into the base
section to keep the required disk usage very small.

http://www.debian.org/doc/packaging-manuals/virtual-package-names-list.txt
http://www.debian.org/doc/packaging-manuals/virtual-package-names-list.txt

Chapter 3. Binary packages 15

Most of these packages will have the priority value required or at least important , and many
of them will be tagged essential (see below).

3.8 Essential packages

Some packages are tagged essential for a system using the Essential control file field. The
format of the Essential control field is described in ‘Essential ’ on page 34.

Since these packages cannot be easily removed (one has to specify an extra force option to dpkg to
do so), this flag must not be used unless absolutely necessary. A shared library package must not
be tagged essential ; dependencies will prevent its premature removal, and we need to be able
to remove it when it has been superseded.

Since dpkg will not prevent upgrading of other packages while an essential package is in an
unconfigured state, all essential packages must supply all of their core functionality even when
unconfigured. If the package cannot satisfy this requirement it must not be tagged as essential,
and any packages depending on this package must instead have explicit dependency fields as
appropriate.

You must not tag any packages essential before this has been discussed on the debian-devel
mailing list and a consensus about doing that has been reached.

3.9 Tasks

The Debian install process allows the user to choose from a number of common tasks which a
Debian system can be used to perform. Selecting a task with tasksel causes a set of packages
that are useful in performing that task to be installed.

This set of packages is all available packages which have the name of the selected task in the Task
field of their control file. The format of this field is a list of tasks, separated by commas.

You should not tag any packages as belonging to a task before this has been discussed on the
debian-devel mailing list and a consensus about doing that has been reached.

For third parties (and historical reasons), tasksel also supports constructing tasks based on task
packages. These are packages whose names begin with task-. Task packages should not be included
in the Debian archive.

3.10 Maintainer Scripts

The package installation scripts should avoid producing output which is unnecessary for the user
to see and should rely on dpkg to stave off boredom on the part of a user installing many packages.

Chapter 3. Binary packages 16

This means, amongst other things, using the --quiet option on install-info .

Errors which occur during the execution of an installation script must be checked and the install-
ation must not continue after an error.

Note that in general ‘Scripts’ on page 86 applies to package maintainer scripts, too.

You should not use dpkg-divert on a file belonging to another package without consulting the
maintainer of that package first.

All packages which supply an instance of a common command name (or, in general, file-
name) should generally use update-alternatives , so that they may be installed together. If
update-alternatives is not used, then each package must use Conflicts to ensure that
other packages are de-installed. (In this case, it may be appropriate to specify a conflict against
earlier versions of something that previously did not use update-alternatives ; this is an ex-
ception to the usual rule that versioned conflicts should be avoided.)

3.10.1 Prompting in maintainer scripts

Package maintainer scripts may prompt the user if necessary. Prompting should be done by com-
municating through a program, such as debconf , which conforms to the Debian Configuration
management specification, version 2 or higher. Prompting the user by other means, such as by
hand3, is now deprecated.

The Debian Configuration management specification is included in the
debconf_specification files in the debian-policy package. It is also available from
the Debian web mirrors at /doc/packaging-manuals/debconf_specification.html
(http://www.debian.org/doc/packaging-manuals/debconf_specification.
html) .

Packages which use the Debian Configuration management specification may contain an addi-
tional config script and a templates file in their control archive4. The config script might
be run before the preinst script, and before the package is unpacked or any of its dependencies
or pre-dependancies are satisfied. Therefore it must work using only the tools present in essential
packages.5

Packages should try to minimize the amount of prompting they need to do, and they should en-
sure that the user will only ever be asked each question once. This means that packages should
try to use appropriate shared configuration files (such as /etc/papersize and /etc/news

3From the Jargon file: by hand 2. By extension, writing code which does something in an explicit or low-level way
for which a presupplied library (debconf, in this instance) routine ought to have been available.

4The control.tar.gz inside the .deb. See deb(5) .
5Debconf or another tool that implements the Debian Configuration management specification will also be in-

stalled, and any versioned dependencies on it will be satisfied before preconfiguration begins.

http://www.debian.org/doc/packaging-manuals/debconf_specification.html
http://www.debian.org/doc/packaging-manuals/debconf_specification.html

Chapter 3. Binary packages 17

/server), and shared debconf variables rather than each prompting for their own list of re-
quired pieces of information.

It also means that an upgrade should not ask the same questions again, unless the user has used
dpkg --purge to remove the package’s configuration. The answers to configuration questions
should be stored in an appropriate place in /etc so that the user can modify them, and how this
has been done should be documented.

If a package has a vitally important piece of information to pass to the user (such as “don’t run
me as I am, you must edit the following configuration files first or you risk your system emitting
badly-formatted messages”), it should display this in the config or postinst script and prompt
the user to hit return to acknowledge the message. Copyright messages do not count as vitally
important (they belong in /usr/share/doc/ package /copyright); neither do instructions on
how to use a program (these should be in on-line documentation, where all the users can see
them).

Any necessary prompting should almost always be confined to the config or postinst script.
If it is done in the postinst , it should be protected with a conditional so that unnecessary
prompting doesn’t happen if a package’s installation fails and the postinst is called with
abort-upgrade , abort-remove or abort-deconfigure .

Chapter 3. Binary packages 18

19

Chapter 4

Source packages

4.1 Standards conformance

Source packages should specify the most recent version number of this policy document with
which your package complied when it was last updated.

This information may be used to file bug reports automatically if your package becomes too much
out of date.

The version is specified in the Standards-Version control field. The format of the
Standards-Version field is described in ‘Standards-Version ’ on page 35.

You should regularly, and especially if your package has become out of date, check for the newest
Policy Manual available and update your package, if necessary. When your package complies
with the new standards you should update the Standards-Version source package field and
release it.1

4.2 Package relationships

Source packages should specify which binary packages they require to be installed or not to be
installed in order to build correctly. For example, if building a package requires a certain compiler,
then the compiler should be specified as a build-time dependency.

It is not necessary to explicitly specify build-time relationships on a minimal set of packages that
are always needed to compile, link and put in a Debian package a standard “Hello World!” pro-
gram written in C or C++. The required packages are called build-essential, and an informational

1See the file upgrading-checklist for information about policy which has changed between different versions
of this document.

Chapter 4. Source packages 20

list can be found in /usr/share/doc/build-essential/list (which is contained in the
build-essential package).2

When specifying the set of build-time dependencies, one should list only those packages explicitly
required by the build. It is not necessary to list packages which are required merely because some
other package in the list of build-time dependencies depends on them.3

If build-time dependencies are specified, it must be possible to build the package and produce
working binaries on a system with only essential and build-essential packages installed and also
those required to satisfy the build-time relationships (including any implied relationships). In
particular, this means that version clauses should be used rigorously in build-time relationships
so that one cannot produce bad or inconsistently configured packages when the relationships are
properly satisfied.

‘Declaring relationships between packages’ on page 51 explains the technical details.

4.3 Changes to the upstream sources

If changes to the source code are made that are not specific to the needs of the Debian system, they
should be sent to the upstream authors in whatever form they prefer so as to be included in the
upstream version of the package.

If you need to configure the package differently for Debian or for Linux, and the upstream source
doesn’t provide a way to do so, you should add such configuration facilities (for example, a new
autoconf test or #define) and send the patch to the upstream authors, with the default set to
the way they originally had it. You can then easily override the default in your debian/rules
or wherever is appropriate.

You should make sure that the configure utility detects the correct architecture specification
string (refer to ‘Architecture specification strings’ on page 95 for details).

If you need to edit a Makefile where GNU-style configure scripts are used, you should edit
the .in files rather than editing the Makefile directly. This allows the user to reconfigure the

2Rationale:
• This allows maintaining the list separately from the policy documents (the list does not need the kind of control

that the policy documents do).
• Having a separate package allows one to install the build-essential packages on a machine, as well as allowing

other packages such as tasks to require installation of the build-essential packages using the depends relation.
• The separate package allows bug reports against the list to be categorized separately from the policy manage-

ment process in the BTS.

3The reason for this is that dependencies change, and you should list all those packages, and only those packages
that you need directly. What others need is their business. For example, if you only link against libimlib , you will
need to build-depend on libimlib2-dev but not against any libjpeg* packages, even though libimlib2-dev
currently depends on them: installation of libimlib2-dev will automatically ensure that all of its run-time depend-
encies are satisfied.

Chapter 4. Source packages 21

package if necessary. You should not configure the package and edit the generated Makefile !
This makes it impossible for someone else to later reconfigure the package without losing the
changes you made.

4.4 Debian changelog: debian/changelog

Changes in the Debian version of the package should be briefly explained in the Debian changelog
file debian/changelog . This includes modifications made in the Debian package compared to
the upstream one as well as other changes and updates to the package. 4

Mistakes in changelogs are usually best rectified by making a new changelog entry rather than
“rewriting history” by editing old changelog entries.

The format of the debian/changelog allows the package building tools to discover which ver-
sion of the package is being built and find out other release-specific information.

That format is a series of entries like this:

package (version) distribution(s) ; urgency= urgency
[optional blank line(s), stripped]

* change details
more change details

[blank line(s), included in output of dpkg-parsechangelog]
* even more change details

[optional blank line(s), stripped]
-- maintainer name <email address >[two spaces] date

package and version are the source package name and version number.

distribution(s) lists the distributions where this version should be installed when it is uploaded - it
is copied to the Distribution field in the .changes file. See ‘Distribution ’ on page 38.

urgency is the value for the Urgency field in the .changes file for the upload (see ‘Urgency ’ on
page 38). It is not possible to specify an urgency containing commas; commas are used to separate
keyword =value settings in the dpkg changelog format (though there is currently only one useful
keyword, urgency).5

The change details may in fact be any series of lines starting with at least two spaces, but con-
ventionally each change starts with an asterisk and a separating space and continuation lines are

4Although there is nothing stopping an author who is also the Debian maintainer from using this changelog for all
their changes, it will have to be renamed if the Debian and upstream maintainers become different people. In such a
case, however, it might be better to maintain the package as a non-native package.

5Recognised urgency values are low , medium, high and emergency . They have an effect on how quickly a
package will be considered for inclusion into the testing distribution, and give an indication of the importance of
any fixes included in this upload.

Chapter 4. Source packages 22

indented so as to bring them in line with the start of the text above. Blank lines may be used here
to separate groups of changes, if desired.

If this upload resolves bugs recorded in the Bug Tracking System (BTS), they may be automatically
closed on the inclusion of this package into the Debian archive by including the string: closes:
Bug#nnnnn in the change details.6 This information is conveyed via the Closes field in the
.changes file (see ‘Closes ’ on page 40).

The maintainer name and email address used in the changelog should be the details of the person
uploading this version. They are not necessarily those of the usual package maintainer. The in-
formation here will be copied to the Changed-By field in the .changes file (see ‘Changed-By ’
on page 33), and then later used to send an acknowledgement when the upload has been installed.

The date should be in RFC822 format7; it should include the time zone specified numerically, with
the time zone name or abbreviation optionally present as a comment in parentheses.

The first “title” line with the package name should start at the left hand margin; the “trailer” line
with the maintainer and date details should be preceded by exactly one space. The maintainer
details and the date must be separated by exactly two spaces.

For more information on placement of the changelog files within binary packages, please see
‘Changelog files’ on page 110.

4.4.1 Alternative changelog formats

In non-experimental packages you must use a format for debian/changelog which is suppor-
ted by the most recent released version of dpkg .

It is possible to use a format different from the standard one by providing a changelog parser
for the format you wish to use. The parser must have an API compatible with that expected by
dpkg-genchanges and dpkg-gencontrol , and it must not interact with the user at all. 8

6To be precise, the string should match the following Perl regular expression:

/closes:\s*(?:bug)?\#?\s?\d+(?:,\s*(?:bug)?\#?\s?\d+)*/i

Then all of the bug numbers listed will be closed by the archive maintenance script (katie), or in the case of an NMU,
marked as fixed.

7This is generated by the 822-date program.
8If there is general interest in the new format, you should contact the dpkg maintainer to have the parser script for

it included in the dpkg package. (You will need to agree that the parser and its man page may be distributed under the
GNU GPL, just as the rest of dpkg is.)

Chapter 4. Source packages 23

4.5 Error trapping in makefiles

When make invokes a command in a makefile (including your package’s upstream makefiles and
debian/rules), it does so using sh . This means that sh ’s usual bad error handling properties
apply: if you include a miniature script as one of the commands in your makefile you’ll find that
if you don’t do anything about it then errors are not detected and make will blithely continue after
problems.

Every time you put more than one shell command (this includes using a loop) in a makefile com-
mand you must make sure that errors are trapped. For simple compound commands, such as
changing directory and then running a program, using && rather than semicolon as a command
separator is sufficient. For more complex commands including most loops and conditionals you
should include a separate set -e command at the start of every makefile command that’s actu-
ally one of these miniature shell scripts.

4.6 Time Stamps

Maintainers should preserve the modification times of the upstream source files in a package, as
far as is reasonably possible.9

4.7 Restrictions on objects in source packages

The source package may not contain any hard links10, device special files, sockets or setuid or
setgid files.11

4.8 Main building script: debian/rules

This file must be an executable makefile, and contains the package-specific recipes for compiling
the package and building binary package(s) from the source.

It must start with the line #!/usr/bin/make -f , so that it can be invoked by saying its name
rather than invoking make explicitly.

9The rationale is that there is some information conveyed by knowing the age of the file, for example, you could re-
cognize that some documentation is very old by looking at the modification time, so it would be nice if the modification
time of the upstream source would be preserved.

10This is not currently detected when building source packages, but only when extracting them. Hard links may be
permitted at some point in the future, but would require a fair amount of work.

11Setgid directories are allowed.

Chapter 4. Source packages 24

Since an interactive debian/rules script makes it impossible to auto-compile that package and
also makes it hard for other people to reproduce the same binary package, all required targets MUST
be non-interactive. At a minimum, required targets are the ones called by dpkg-buildpackage ,
namely, clean, binary, binary-arch, binary-indep, and build. It also follows that any target that these
targets depend on must also be non-interactive.

The targets are as follows (required unless stated otherwise):

build The build target should perform all the configuration and compilation of the package.
If a package has an interactive pre-build configuration routine, the Debianized source pack-
age must either be built after this has taken place (so that the binary package can be built
without rerunning the configuration) or the configuration routine modified to become non-
interactive. (The latter is preferable if there are architecture-specific features detected by the
configuration routine.)

For some packages, notably ones where the same source tree is compiled in different ways
to produce two binary packages, the build target does not make much sense. For these
packages it is good enough to provide two (or more) targets (build-a and build-b or
whatever) for each of the ways of building the package, and a build target that does noth-
ing. The binary target will have to build the package in each of the possible ways and make
the binary package out of each.

The build target must not do anything that might require root privilege.

The build target may need to run the clean target first - see below.

When a package has a configuration and build routine which takes a long time, or when the
makefiles are poorly designed, or when build needs to run clean first, it is a good idea to
touch build when the build process is complete. This will ensure that if debian/rules
build is run again it will not rebuild the whole program.12

build-arch (optional), build-indep (optional) A package may also provide both of the tar-
gets build-arch and build-indep . The build-arch target, if provided, should
perform all the configuration and compilation required for producing all architecture-
dependant binary packages (those packages for which the body of the Architecture field
in debian/control is not all). Similarly, the build-indep target, if provided, should
perform all the configuration and compilation required for producing all architecture-
independent binary packages (those packages for which the body of the Architecture
field in debian/control is all). The build target should depend on those of the targets
build-arch and build-indep that are provided in the rules file.

12Another common way to do this is for build to depend on build-stamp and to do nothing else, and for the
build-stamp target to do the building and to touch build-stamp on completion. This is especially useful if the
build routine creates a file or directory called build ; in such a case, build will need to be listed as a phony target (i.e.,
as a dependency of the .PHONYtarget). See the documentation of make for more information on phony targets.

Chapter 4. Source packages 25

If one or both of the targets build-arch and build-indep are not provided, then invok-
ing debian/rules with one of the not-provided targets as arguments should produce a
exit status code of 2. Usually this is provided automatically by make if the target is missing.

The build-arch and build-indep targets must not do anything that might require root
privilege.

binary , binary-arch , binary-indep The binary target must be all that is necessary for the
user to build the binary package(s) produced from this source package. It is split into two
parts: binary-arch builds the binary packages which are specific to a particular architec-
ture, and binary-indep builds those which are not.

binary may be (and commonly is) a target with no commands which simply depends on
binary-arch and binary-indep .

Both binary-* targets should depend on the build target, or on the appropriate
build-arch or build-indep target, if provided, so that the package is built if it has not
been already. It should then create the relevant binary package(s), using dpkg-gencontrol
to make their control files and dpkg-deb to build them and place them in the parent of the
top level directory.

Both the binary-arch and binary-indep targets must exist. If one of them has nothing
to do (which will always be the case if the source generates only a single binary package,
whether architecture-dependent or not), it must still exist and must always succeed.

The binary targets must be invoked as root.13

clean This must undo any effects that the build and binary targets may have had, except that
it should leave alone any output files created in the parent directory by a run of a binary
target.

If a build file is touched at the end of the build target, as suggested above, it should
be removed as the first action that clean performs, so that running build again after an
interrupted clean doesn’t think that everything is already done.

The clean target may need to be invoked as root if binary has been invoked since the
last clean , or if build has been invoked as root (since build may create directories, for
example).

get-orig-source (optional) This target fetches the most recent version of the original source
package from a canonical archive site (via FTP or WWW, for example), does any necessary
rearrangement to turn it into the original source tar file format described below, and leaves
it in the current directory.

This target may be invoked in any directory, and should take care to clean up any temporary
files it may have left.

This target is optional, but providing it if possible is a good idea.

13The fakeroot package often allows one to build a package correctly even without being root.

Chapter 4. Source packages 26

The build , binary and clean targets must be invoked with the current directory being the
package’s top-level directory.

Additional targets may exist in debian/rules , either as published or undocumented interfaces
or for the package’s internal use.

The architectures we build on and build for are determined by make variables using the utility
dpkg-architecture . You can determine the Debian architecture and the GNU style architec-
ture specification string for the build machine (the machine type we are building on) as well as
for the host machine (the machine type we are building for). Here is a list of supported make
variables:

• DEB_*_ARCH(the Debian architecture)
• DEB_*_GNU_TYPE(the GNU style architecture specification string)
• DEB_*_GNU_CPU(the CPU part of DEB_*_GNU_TYPE)
• DEB_*_GNU_SYSTEM(the System part of DEB_*_GNU_TYPE)

where * is either BUILD for specification of the build machine or HOSTfor specification of the host
machine.

Backward compatibility can be provided in the rules file by setting the needed variables to suitable
default values; please refer to the documentation of dpkg-architecture for details.

It is important to understand that the DEB_*_ARCHstring only determines which Debian archi-
tecture we are building on or for. It should not be used to get the CPU or system information; the
GNU style variables should be used for that.

4.9 Variable substitutions: debian/substvars

When dpkg-gencontrol , dpkg-genchanges and dpkg-source generate control files they
perform variable substitutions on their output just before writing it. Variable substitutions have
the form ${ variable } . The optional file debian/substvars contains variable substitutions to
be used; variables can also be set directly from debian/rules using the -V option to the source
packaging commands, and certain predefined variables are also available.

The debian/substvars file is usually generated and modified dynamically by debian/rules
targets, in which case it must be removed by the clean target.

See dpkg-source(1) for full details about source variable substitutions, including the format of
debian/substvars .

4.10 Generated files list: debian/files

This file is not a permanent part of the source tree; it is used while building packages to record
which files are being generated. dpkg-genchanges uses it when it generates a .changes file.

Chapter 4. Source packages 27

It should not exist in a shipped source package, and so it (and any backup files or temporary files
such as files.new 14) should be removed by the clean target. It may also be wise to ensure a
fresh start by emptying or removing it at the start of the binary target.

When dpkg-gencontrol is run for a binary package, it adds an entry to debian/files for the
.deb file that will be created when dpkg-deb --build is run for that binary package. So for
most packages all that needs to be done with this file is to delete it in the clean target.

If a package upload includes files besides the source package and any binary packages whose
control files were made with dpkg-gencontrol then they should be placed in the parent of the
package’s top-level directory and dpkg-distaddfile should be called to add the file to the list
in debian/files .

14files.new is used as a temporary file by dpkg-gencontrol and dpkg-distaddfile - they write a new
version of files here before renaming it, to avoid leaving a corrupted copy if an error occurs.

Chapter 4. Source packages 28

29

Chapter 5

Control files and their fields

The package management system manipulates data represented in a common format, known as
control data, stored in control files. Control files are used for source packages, binary packages and
the .changes files which control the installation of uploaded files1.

5.1 Syntax of control files

A control file consists of one or more paragraphs of fields2. The paragraphs are separated by
blank lines. Some control files allow only one paragraph; others allow several, in which case
each paragraph usually refers to a different package. (For example, in source packages, the first
paragraph refers to the source package, and later paragraphs refer to binary packages generated
from the source.)

Each paragraph consists of a series of data fields; each field consists of the field name, followed by
a colon and then the data/value associated with that field. It ends at the end of the line. Horizontal
whitespace (spaces and tabs) may occur immediately before or after the value and is ignored there;
it is conventional to put a single space after the colon. For example, a field might be:

Package: libc6

the field name is Package and the field value libc6 .

Some fields’ values may span several lines; in this case each continuation line must start with a
space or a tab. Any trailing spaces or tabs at the end of individual lines of a field value are ignored.

Except where otherwise stated, only a single line of data is allowed and whitespace is not sig-
nificant in a field body. Whitespace must not appear inside names (of packages, architectures,

1dpkg ’s internal databases are in a similar format.
2The paragraphs are also sometimes referred to as stanzas.

Chapter 5. Control files and their fields 30

files or anything else) or version numbers, or between the characters of multi-character version
relationships.

Field names are not case-sensitive, but it is usual to capitalize the field names using mixed case as
shown below.

Blank lines, or lines consisting only of spaces and tabs, are not allowed within field values or
between fields - that would mean a new paragraph.

5.2 Source package control files – debian/control

The debian/control file contains the most vital (and version-independent) information about
the source package and about the binary packages it creates.

The first paragraph of the control file contains information about the source package in general.
The subsequent sets each describe a binary package that the source tree builds.

The fields in the general paragraph (the first one, for the source package) are:
• Source (mandatory)
• Maintainer (mandatory)
• Section (recommended)
• Priority (recommended)
• Build-Depends et al
• Standards-Version (recommended)

The fields in the binary package paragraphs are:
• Package (mandatory)
• Architecture (mandatory)
• Section (recommended)
• Priority (recommended)
• Essential
• Depends et al
• Description (mandatory)

The syntax and semantics of the fields are described below.

These fields are used by dpkg-gencontrol to generate control files for binary packages (see
below), by dpkg-genchanges to generate the .changes file to accompany the upload, and by
dpkg-source when it creates the .dsc source control file as part of a source archive.

The fields here may contain variable references - their values will be substituted by
dpkg-gencontrol , dpkg-genchanges or dpkg-source when they generate output control
files. See ‘Variable substitutions: debian/substvars ’ on page 26 for details.

Chapter 5. Control files and their fields 31

5.3 Binary package control files – DEBIAN/control

The DEBIAN/control file contains the most vital (and version-dependent) information about a
binary package.

The fields in this file are:
• Package (mandatory)
• Source
• Version (mandatory)
• Section (recommended)
• Priority (recommended)
• Architecture (mandatory)
• Essential
• Depends et al
• Installed-Size
• Maintainer (mandatory)
• Description (mandatory)

5.4 Debian source control files – .dsc

This file contains a series of fields, identified and separated just like the fields in the control file of
a binary package. The fields are listed below; their syntax is described above, in ‘Control files and
their fields (from old Packaging Manual)’ on page 129.

• Format
• Source (mandatory)
• Version (mandatory)
• Maintainer (mandatory)
• Binary
• Architecture
• Build-Depends et al
• Standards-Version (recommended)
• Files (mandatory)

The source package control file is generated by dpkg-source when it builds the source archive,
from other files in the source package, described above. When unpacking, it is checked against
the files and directories in the other parts of the source package.

Chapter 5. Control files and their fields 32

5.5 Debian changes files – .changes

The .changes files are used by the Debian archive maintenance software to process updates to
packages. They contain one paragraph which contains information from the debian/control
file and other data about the source package gathered via debian/changelog and
debian/rules .

The fields in this file are:
• Format (mandatory)
• Date (mandatory)
• Source (mandatory)
• Binary (mandatory)
• Architecture (mandatory)
• Version (mandatory)
• Distribution (mandatory)
• Urgency (recommended)
• Maintainer (mandatory)
• Changed-By
• Description (mandatory)
• Closes
• Changes (mandatory)
• Files (mandatory)

5.6 List of fields

5.6.1 Source

This field identifies the source package name.

In a main source control information, a .changes or a .dsc file this may contain only the name
of the source package.

In the control file of a binary package it may be followed by a version number in parentheses3.
This version number may be omitted (and is, by dpkg-gencontrol) if it has the same value
as the Version field of the binary package in question. The field itself may be omitted from a
binary package control file when the source package has the same name and version as the binary
package.

3It is customary to leave a space after the package name if a version number is specified.

Chapter 5. Control files and their fields 33

5.6.2 Maintainer

The package maintainer’s name and email address. The name should come first, then the email
address inside angle brackets <> (in RFC822 format).

If the maintainer’s name contains a full stop then the whole field will not work directly as an
email address due to a misfeature in the syntax specified in RFC822; a program using this field as
an address must check for this and correct the problem if necessary (for example by putting the
name in round brackets and moving it to the end, and bringing the email address forward).

5.6.3 Changed-By

The name and email address of the person who changed the said package. Usually the name of
the maintainer. All the rules for the Maintainer field apply here, too.

5.6.4 Section

This field specifies an application area into which the package has been classified. See ‘Subsec-
tions’ on page 9.

When it appears in the debian/control file, it gives the value for the subfield of the same name
in the Files field of the .changes file. It also gives the default for the same field in the binary
packages.

By default, dpkg-gencontrol does not include this field in the control file of a binary package -
use the -is (or -isp) options to achieve this effect.

5.6.5 Priority

This field represents how important that it is that the user have the package installed. See ‘Prior-
ities’ on page 9.

When it appears in the debian/control file, it gives the value for the subfield of the same name
in the Files field of the .changes file. It also gives the default for the same field in the binary
packages.

By default, dpkg-gencontrol does not include this field in the control file of a binary package -
use the -ip (or -isp) options to achieve this effect.

5.6.6 Package

The name of the binary package.

Chapter 5. Control files and their fields 34

Package names must consist only of lower case letters (a-z), digits (0-9), plus (+) and minus
(-) signs, and periods (.). They must be at least two characters long and must start with an
alphanumeric character.

5.6.7 Architecture

Depending on context and the control file used, the Architecture field can include the follow-
ing sets of values:

• A unique single word identifying a Debian machine architecture, see ‘Architecture specific-
ation strings’ on page 95.

• all , which indicates an architecture-independent package.

• any , which indicates a package available for building on any architecture.

• source , which indicates a source package.

In the main debian/control file in the source package, or in the source package control file
.dsc , one may specify a list of architectures separated by spaces, or the special values any or
all .

Specifying any indicates that the source package isn’t dependent on any particular architecture
and should compile fine on any one. The produced binary package(s) will be specific to whatever
the current build architecture is.4

Specifying a list of architectures indicates that the source will build an architecture-dependent
package, and will only work correctly on the listed architectures.5

In a .changes file, the Architecture field lists the architecture(s) of the package(s) currently
being uploaded. This will be a list; if the source for the package is also being uploaded, the special
entry source is also present.

See ‘Main building script: debian/rules ’ on page 23 for information how to get the architecture
for the build process.

5.6.8 Essential

This is a boolean field which may occur only in the control file of a binary package or in a per-
package fields paragraph of a main source control data file.

4This is the most often used setting, and is recommended for new packages that aren’t Architecture: all .
5This is a setting used for a minority of cases where the program is not portable. Generally, it should not be used

for new packages.

Chapter 5. Control files and their fields 35

If set to yes then the package management system will refuse to remove the package (upgrading
and replacing it is still possible). The other possible value is no , which is the same as not having
the field at all.

5.6.9 Package interrelationship fields: Depends , Pre-Depends , Recommends,
Suggests , Conflicts , Provides , Replaces , Enhances

These fields describe the package’s relationships with other packages. Their syntax and semantics
are described in ‘Declaring relationships between packages’ on page 51.

5.6.10 Standards-Version

The most recent version of the standards (the policy manual and associated texts) with which the
package complies.

The version number has four components: major and minor version number and major and minor
patch level. When the standards change in a way that requires every package to change the major
number will be changed. Significant changes that will require work in many packages will be
signaled by a change to the minor number. The major patch level will be changed for any change
to the meaning of the standards, however small; the minor patch level will be changed when
only cosmetic, typographical or other edits are made which neither change the meaning of the
document nor affect the contents of packages.

Thus only the first three components of the policy version are significant in the Standards-Version
control field, and so either these three components or the all four components may be specified.6

5.6.11 Version

The version number of a package. The format is: [epoch:]upstream_version[- debian_revision]

The three components here are:

epoch This is a single (generally small) unsigned integer. It may be omitted, in which case zero is
assumed. If it is omitted then the upstream_version may not contain any colons.

It is provided to allow mistakes in the version numbers of older versions of a package, and
also a package’s previous version numbering schemes, to be left behind.

6In the past, people specified the full version number in the Standards-Version field, for example “2.3.0.0”. Since
minor patch-level changes don’t introduce new policy, it was thought it would be better to relax policy and only require
the first 3 components to be specified, in this example “2.3.0”. All four components may still be used if someone wishes
to do so.

Chapter 5. Control files and their fields 36

upstream_version This is the main part of the version number. It is usually the version number
of the original (“upstream”) package from which the .deb file has been made, if this is ap-
plicable. Usually this will be in the same format as that specified by the upstream author(s);
however, it may need to be reformatted to fit into the package management system’s format
and comparison scheme.

The comparison behavior of the package management system with respect to the up-
stream_version is described below. The upstream_version portion of the version number is
mandatory.

The upstream_version may contain only alphanumerics7 and the characters . + - : (full stop,
plus, hyphen, colon) and should start with a digit. If there is no debian_revision then hyphens
are not allowed; if there is no epoch then colons are not allowed.

debian_revision This part of the version number specifies the version of the Debian package based
on the upstream version. It may contain only alphanumerics and the characters + and .
(plus and full stop) and is compared in the same way as the upstream_version is.

It is optional; if it isn’t present then the upstream_version may not contain a hyphen. This
format represents the case where a piece of software was written specifically to be turned
into a Debian package, and so there is only one “debianization” of it and therefore no revi-
sion indication is required.

It is conventional to restart the debian_revision at 1 each time the upstream_version is increased.

The package management system will break the version number apart at the last hyphen in
the string (if there is one) to determine the upstream_version and debian_revision. The absence
of a debian_revision compares earlier than the presence of one (but note that the debian_revision
is the least significant part of the version number).

The upstream_version and debian_revision parts are compared by the package management system
using the same algorithm:

The strings are compared from left to right.

First the initial part of each string consisting entirely of non-digit characters is determined. These
two parts (one of which may be empty) are compared lexically. If a difference is found it is re-
turned. The lexical comparison is a comparison of ASCII values modified so that all the letters
sort earlier than all the non-letters.

Then the initial part of the remainder of each string which consists entirely of digit characters is
determined. The numerical values of these two parts are compared, and any difference found is
returned as the result of the comparison. For these purposes an empty string (which can only
occur at the end of one or both version strings being compared) counts as zero.

These two steps (comparing and removing initial non-digit strings and initial digit strings) are
repeated until a difference is found or both strings are exhausted.

7Alphanumerics are A-Za-z0-9 only.

Chapter 5. Control files and their fields 37

Note that the purpose of epochs is to allow us to leave behind mistakes in version numbering, and
to cope with situations where the version numbering scheme changes. It is not intended to cope
with version numbers containing strings of letters which the package management system cannot
interpret (such as ALPHAor pre-), or with silly orderings (the author of this manual has heard of
a package whose versions went 1.1 , 1.2 , 1.3 , 1, 2.1 , 2.2 , 2 and so forth).

5.6.12 Description

In a source or binary control file, the Description field contains a description of the binary
package, consisting of two parts, the synopsis or the short description, and the long description.
The field’s format is as follows:

Description: <single line synopsis>
<extended description over several lines>

The lines in the extended description can have these formats:

• Those starting with a single space are part of a paragraph. Successive lines of this form will
be word-wrapped when displayed. The leading space will usually be stripped off.

• Those starting with two or more spaces. These will be displayed verbatim. If the display can-
not be panned horizontally, the displaying program will linewrap them “hard” (i.e., without
taking account of word breaks). If it can they will be allowed to trail off to the right. None,
one or two initial spaces may be deleted, but the number of spaces deleted from each line
will be the same (so that you can have indenting work correctly, for example).

• Those containing a single space followed by a single full stop character. These are rendered
as blank lines. This is the only way to get a blank line8.

• Those containing a space, a full stop and some more characters. These are for future expan-
sion. Do not use them.

Do not use tab characters. Their effect is not predictable.

See ‘The description of a package’ on page 12 for further information on this.

In a .changes file, the Description field contains a summary of the descriptions for the pack-
ages being uploaded.

The part of the field before the first newline is empty; thereafter each line has the name of a binary
package and the summary description line from that binary package. Each line is indented by one
space.

8Completely empty lines will not be rendered as blank lines. Instead, they will cause the parser to think you’re
starting a whole new record in the control file, and will therefore likely abort with an error.

Chapter 5. Control files and their fields 38

5.6.13 Distribution

In a .changes file or parsed changelog output this contains the (space-separated) name(s) of
the distribution(s) where this version of the package should be installed. Valid distributions are
determined by the archive maintainers.9

5.6.14 Date

This field includes the date the package was built or last edited.

The value of this field is usually extracted from the debian/changelog file - see ‘Debian
changelog: debian/changelog ’ on page 21).

5.6.15 Format

This field specifies a format revision for the file. The most current format described in the Policy
Manual is version 1.5. The syntax of the format value is the same as that of a package version
number except that no epoch or Debian revision is allowed - see ‘Version ’ on page 35.

5.6.16 Urgency

This is a description of how important it is to upgrade to this version from previous ones. It con-
sists of a single keyword usually taking one of the values low , medium or high (not case-sensitive)
followed by an optional commentary (separated by a space) which is usually in parentheses. For
example:

9Current distribution names are:
stable This is the current “released” version of Debian GNU/Linux. Once the distribution is stable only security fixes

and other major bug fixes are allowed. When changes are made to this distribution, the release number is
increased (for example: 2.2r1 becomes 2.2r2 then 2.2r3, etc).

unstable This distribution value refers to the developmental part of the Debian distribution tree. New packages, new
upstream versions of packages and bug fixes go into the unstable directory tree. Download from this distribution
at your own risk.

testing This distribution value refers to the testing part of the Debian distribution tree. It receives its packages from the
unstable distribution after a short time lag to ensure that there are no major issues with the unstable packages.
It is less prone to breakage than unstable, but still risky. It is not possible to upload packages directly to testing.

frozen From time to time, the testing distribution enters a state of “code-freeze” in anticipation of release as a stable
version. During this period of testing only fixes for existing or newly-discovered bugs will be allowed. The
exact details of this stage are determined by the Release Manager.

experimental The packages with this distribution value are deemed by their maintainers to be high risk. Oftentimes
they represent early beta or developmental packages from various sources that the maintainers want people to
try, but are not ready to be a part of the other parts of the Debian distribution tree. Download at your own risk.

You should list all distributions that the package should be installed into. More information is available in the Debian
Developer’s Reference, section “The Debian archive”.

Chapter 5. Control files and their fields 39

Urgency: low (HIGH for users of diversions)

The value of this field is usually extracted from the debian/changelog file - see ‘Debian
changelog: debian/changelog ’ on page 21.

5.6.17 Changes

This field contains the human-readable changes data, describing the differences between the last
version and the current one.

There should be nothing in this field before the first newline; all the subsequent lines must be
indented by at least one space; blank lines must be represented by a line consiting only of a space
and a full stop.

The value of this field is usually extracted from the debian/changelog file - see ‘Debian
changelog: debian/changelog ’ on page 21).

Each version’s change information should be preceded by a “title” line giving at least the version,
distribution(s) and urgency, in a human-readable way.

If data from several versions is being returned the entry for the most recent version should be
returned first, and entries should be separated by the representation of a blank line (the “title” line
may also be followed by the representation of blank line).

5.6.18 Binary

This field is a list of binary packages.

When it appears in the .dsc file it is the list of binary packages which a source package can
produce. It does not necessarily produce all of these binary packages for every architecture. The
source control file doesn’t contain details of which architectures are appropriate for which of the
binary packages.

When it appears in a .changes file it lists the names of the binary packages actually being up-
loaded.

The syntax is a list of binary packages separated by commas10. Currently the packages must be
separated using only spaces in the .changes file.

5.6.19 Installed-Size

This field appears in the control files of binary packages, and in the Packages files. It gives the
total amount of disk space required to install the named package.

10A space after each comma is conventional.

Chapter 5. Control files and their fields 40

The disk space is represented in kilobytes as a simple decimal number.

5.6.20 Files

This field contains a list of files with information about each one. The exact information and syntax
varies with the context. In all cases the part of the field contents on the same line as the field name
is empty. The remainder of the field is one line per file, each line being indented by one space and
containing a number of sub-fields separated by spaces.

In the .dsc file, each line contains the MD5 checksum, size and filename of the tar file and (if
applicable) diff file which make up the remainder of the source package11. The exact forms of the
filenames are described in ‘Source packages as archives’ on page 126.

In the .changes file this contains one line per file being uploaded. Each line contains the MD5
checksum, size, section and priority and the filename. The section and priority are the values of
the corresponding fields in the main source control file. If no section or priority is specified then
- should be used, though section and priority values must be specified for new packages to be
installed properly.

The special value byhand for the section in a .changes file indicates that the file in question is
not an ordinary package file and must by installed by hand by the distribution maintainers. If the
section is byhand the priority should be - .

If a new Debian revision of a package is being shipped and no new original source archive is
being distributed the .dsc must still contain the Files field entry for the original source archive
package - upstream-version .orig.tar.gz , but the .changes file should leave it out. In
this case the original source archive on the distribution site must match exactly, byte-for-byte,
the original source archive which was used to generate the .dsc file and diff which are being
uploaded.

5.6.21 Closes

A space-separated list of bug report numbers that the upload governed by the .changes file closes.

5.7 User-defined fields

Additional user-defined fields may be added to the source package control file. Such fields will be
ignored, and not copied to (for example) binary or source package control files or upload control
files.

11That is, the parts which are not the .dsc .

Chapter 5. Control files and their fields 41

If you wish to add additional unsupported fields to these output files you should use the mech-
anism described here.

Fields in the main source control information file with names starting X, followed by one or more
of the letters BCSand a hyphen - , will be copied to the output files. Only the part of the field name
after the hyphen will be used in the output file. Where the letter B is used the field will appear in
binary package control files, where the letter S is used in source package control files and where C
is used in upload control (.changes) files.

For example, if the main source information control file contains the field

XBS-Comment: I stand between the candle and the star.

then the binary and source package control files will contain the field

Comment: I stand between the candle and the star.

Chapter 5. Control files and their fields 42

43

Chapter 6

Package maintainer scripts and
installation procedure

6.1 Introduction to package maintainer scripts

It is possible to supply scripts as part of a package which the package management system will
run for you when your package is installed, upgraded or removed.

These scripts are the files preinst , postinst , prerm and postrm in the control area of the
package. They must be proper executable files; if they are scripts (which is recommended), they
must start with the usual #! convention. They should be readable and executable by anyone, and
not world-writable.

The package management system looks at the exit status from these scripts. It is important that
they exit with a non-zero status if there is an error, so that the package management system can
stop its processing. For shell scripts this means that you almost always need to use set -e (this is
usually true when writing shell scripts, in fact). It is also important, of course, that they don’t exit
with a non-zero status if everything went well.

When a package is upgraded a combination of the scripts from the old and new packages is called
during the upgrade procedure. If your scripts are going to be at all complicated you need to be
aware of this, and may need to check the arguments to your scripts.

Broadly speaking the preinst is called before (a particular version of) a package is installed, and
the postinst afterwards; the prerm before (a version of) a package is removed and the postrm
afterwards.

Programs called from maintainer scripts should not normally have a path prepended to them.
Before installation is started, the package management system checks to see if the programs
ldconfig , start-stop-daemon , install-info , and update-rc.d can be found via the

Chapter 6. Package maintainer scripts and installation procedure 44

PATH environment variable. Those programs, and any other program that one would expect
to be on the PATH, should thus be invoked without an absolute pathname. Maintainer scripts
should also not reset the PATH, though they might choose to modify it by prepending or append-
ing package-specific directories. These considerations really apply to all shell scripts.

6.2 Maintainer scripts Idempotency

It is necessary for the error recovery procedures that the scripts be idempotent. This means that
if it is run successfully, and then it is called again, it doesn’t bomb out or cause any harm, but
just ensures that everything is the way it ought to be. If the first call failed, or aborted half way
through for some reason, the second call should merely do the things that were left undone the
first time, if any, and exit with a success status if everything is OK.1

6.3 Controlling terminal for maintainer scripts

The maintainer scripts are guaranteed to run with a controlling terminal and can interact with
the user. If they need to prompt for passwords, do full-screen interaction or something similar
you should do these things to and from /dev/tty , since dpkg will at some point redirect scripts’
standard input and output so that it can log the installation process. Likewise, because these
scripts may be executed with standard output redirected into a pipe for logging purposes, Perl
scripts should set unbuffered output by setting $|=1 so that the output is printed immediately
rather than being buffered.

Each script should return a zero exit status for success, or a nonzero one for failure.

6.4 Summary of ways maintainer scripts are called

• new-preinst install
• new-preinst install old-version
• new-preinst upgrade old-version
• old-preinst abort-upgrade new-version
• postinst configure most-recently-configured-version
• old-postinst abort-upgrade new-version
• conflictor’s-postinst abort-remove in-favour package new-version
• deconfigured’s-postinst abort-deconfigure in-favour failed-install-package version

removing conflicting-package version

1This is so that if an error occurs, the user interrupts dpkg or some other unforeseen circumstance happens you
don’t leave the user with a badly-broken package when dpkg attempts to repeat the action.

Chapter 6. Package maintainer scripts and installation procedure 45

• prerm remove
• old-prerm upgrade new-version
• new-prerm failed-upgrade old-version
• conflictor’s-prerm remove in-favour package new-version
• deconfigured’s-prerm deconfigure in-favour package-being-installed version removing

conflicting-package version
• postrm remove
• postrm purge
• old-postrm upgrade new-version
• new-postrm failed-upgrade old-version
• new-postrm abort-install
• new-postrm abort-install old-version
• new-postrm abort-upgrade old-version
• disappearer’s-postrm disappear overwriter overwriter-version

6.5 Details of unpack phase of installation or upgrade

The procedure on installation/upgrade/overwrite/disappear (i.e., when running dpkg
--unpack , or the unpack stage of dpkg --install) is as follows. In each case, if a major error
occurs (unless listed below) the actions are, in general, run backwards - this means that the main-
tainer scripts are run with different arguments in reverse order. These are the “error unwind” calls
listed below.

1 1 If a version of the package is already installed, call

old-prerm upgrade new-version

2 If the script runs but exits with a non-zero exit status, dpkg will attempt:

new-prerm failed-upgrade old-version

Error unwind, for both the above cases:

old-postinst abort-upgrade new-version

2 If a “conflicting” package is being removed at the same time:

1 If any packages depended on that conflicting package and --auto-deconfigure is
specified, call, for each such package:

deconfigured’s-prerm deconfigure \
in-favour package-being-installed version \

removing conflicting-package version

Error unwind:

Chapter 6. Package maintainer scripts and installation procedure 46

deconfigured’s-postinst abort-deconfigure \
in-favour package-being-installed-but-failed version \

removing conflicting-package version

The deconfigured packages are marked as requiring configuration, so that if
--install is used they will be configured again if possible.

2 To prepare for removal of the conflicting package, call:

conflictor’s-prerm remove \
in-favour package new-version

Error unwind:

conflictor’s-postinst abort-remove \
in-favour package new-version

3 1 If the package is being upgraded, call:

new-preinst upgrade old-version

2 Otherwise, if the package had some configuration files from a previous version installed
(i.e., it is in the “configuration files only” state):

new-preinst install old-version

3 Otherwise (i.e., the package was completely purged):

new-preinst install

Error unwind actions, respectively:

new-postrm abort-upgrade old-version
new-postrm abort-install old-version
new-postrm abort-install

4 The new package’s files are unpacked, overwriting any that may be on the system already,
for example any from the old version of the same package or from another package. Backups
of the old files are kept temporarily, and if anything goes wrong the package management
system will attempt to put them back as part of the error unwind.

It is an error for a package to contain files which are on the system in another package, unless
Replaces is used (see ‘Overwriting files and replacing packages - Replaces ’ on page 55).

It is a more serious error for a package to contain a plain file or other kind of non-directory
where another package has a directory (again, unless Replaces is used). This error can be
overridden if desired using --force-overwrite-dir , but this is not advisable.

Packages which overwrite each other’s files produce behavior which, though deterministic,
is hard for the system administrator to understand. It can easily lead to “missing” programs

Chapter 6. Package maintainer scripts and installation procedure 47

if, for example, a package is installed which overwrites a file from another package, and is
then removed again.2

A directory will never be replaced by a symbolic link to a directory or vice versa; instead,
the existing state (symlink or not) will be left alone and dpkg will follow the symlink if there
is one.

5 1 If the package is being upgraded, call

old-postrm upgrade new-version

2 If this fails, dpkg will attempt:

new-postrm failed-upgrade old-version

Error unwind, for both cases:

old-preinst abort-upgrade new-version

This is the point of no return - if dpkg gets this far, it won’t back off past this point if an
error occurs. This will leave the package in a fairly bad state, which will require a successful
re-installation to clear up, but it’s when dpkg starts doing things that are irreversible.

6 Any files which were in the old version of the package but not in the new are removed.

7 The new file list replaces the old.

8 The new maintainer scripts replace the old.

9 Any packages all of whose files have been overwritten during the installation, and which
aren’t required for dependencies, are considered to have been removed. For each such pack-
age

1 dpkg calls:

disappearer’s-postrm disappear \
overwriter overwriter-version

2 The package’s maintainer scripts are removed.

3 It is noted in the status database as being in a sane state, namely not installed (any
conffiles it may have are ignored, rather than being removed by dpkg). Note that dis-
appearing packages do not have their prerm called, because dpkg doesn’t know in
advance that the package is going to vanish.

10 Any files in the package we’re unpacking that are also listed in the file lists of other packages
are removed from those lists. (This will lobotomize the file list of the “conflicting” package
if there is one.)

2Part of the problem is due to what is arguably a bug in dpkg .

Chapter 6. Package maintainer scripts and installation procedure 48

11 The backup files made during installation, above, are deleted.

12 The new package’s status is now sane, and recorded as “unpacked”.

Here is another point of no return - if the conflicting package’s removal fails we do not
unwind the rest of the installation; the conflicting package is left in a half-removed limbo.

13 If there was a conflicting package we go and do the removal actions (described below), start-
ing with the removal of the conflicting package’s files (any that are also in the package being
installed have already been removed from the conflicting package’s file list, and so do not
get removed now).

6.6 Details of configuration

When we configure a package (this happens with dpkg --install and dpkg --configure),
we first update any conffile s and then call:

postinst configure most-recently-configured-version

No attempt is made to unwind after errors during configuration.

If there is no most recently configured version dpkg will pass a null argument. 3

6.7 Details of removal and/or configuration purging

1 prerm remove

2 The package’s files are removed (except conffile s).

3 postrm remove

4 All the maintainer scripts except the postrm are removed.

If we aren’t purging the package we stop here. Note that packages which have no postrm
and no conffile s are automatically purged when removed, as there is no difference except
for the dpkg status.

5 The conffile s and any backup files (~-files, #*# files, %-files, .dpkg-{old,new,tmp} ,
etc.) are removed.

3Historical note: Truly ancient (pre-1997) versions of dpkg passed <unknown> (including the angle brackets) in
this case. Even older ones did not pass a second argument at all, under any circumstance. Note that upgrades using
such an old dpkg version are unlikely to work for other reasons, even if this old argument behavior is handled by your
postinst script.

Chapter 6. Package maintainer scripts and installation procedure 49

6 postrm purge

7 The package’s file list is removed.

If there are problems during this process, we call

postinst
abort-remove

. No other attempt is made to unwind after errors during removal.

Chapter 6. Package maintainer scripts and installation procedure 50

51

Chapter 7

Declaring relationships between
packages

7.1 Syntax of relationship fields

These fields all have a uniform syntax. They are a list of package names separated by commas.

In the Depends , Recommends, Suggests , Pre-Depends , Build-Depends and
Build-Depends-Indep control file fields of the package, which declare dependencies on
other packages, the package names listed may also include lists of alternative package names,
separated by vertical bar (pipe) symbols | . In such a case, if any one of the alternative packages
is installed, that part of the dependency is considered to be satisfied.

All of the fields except for Provides may restrict their applicability to particular versions of each
named package. This is done in parentheses after each individual package name; the parentheses
should contain a relation from the list below followed by a version number, in the format described
in ‘Version ’ on page 35.

The relations allowed are <<, <=, =, >= and >> for strictly earlier, earlier or equal, exactly equal,
later or equal and strictly later, respectively. The deprecated forms < and > were used to mean
earlier/later or equal, rather than strictly earlier/later, so they should not appear in new packages
(though dpkg still supports them).

Whitespace may appear at any point in the version specification subject to the rules in ‘Syntax of
control files’ on page 29, and must appear where it’s necessary to disambiguate; it is not otherwise
significant. For consistency and in case of future changes to dpkg it is recommended that a single
space be used after a version relationship and before a version number; it is also conventional
to put a single space after each comma, on either side of each vertical bar, and before each open
parenthesis.

For example, a list of dependencies might appear as:

Chapter 7. Declaring relationships between packages 52

Package: mutt
Version: 1.3.17-1
Depends: libc6 (>= 2.2.1), exim | mail-transport-agent

All fields that specify build-time relationships (Build-Depends , Build-Depends-Indep ,
Build-Conflicts and Build-Conflicts-Indep) may be restricted to a certain set of archi-
tectures. This is indicated in brackets after each individual package name and the optional version
specification. The brackets enclose a list of Debian architecture names separated by whitespace.
Exclamation marks may be prepended to each of the names. (It is not permitted for some names
to be prepended with exclamation marks and others not.) If the current Debian host architecture
is not in this list and there are no exclamation marks in the list, or it is in the list with a prepen-
ded exclamation mark, the package name and the associated version specification are ignored
completely for the purposes of defining the relationships.

For example:

Source: glibc
Build-Depends-Indep: texinfo
Build-Depends: kernel-headers-2.2.10 [!hurd-i386],

hurd-dev [hurd-i386], gnumach-dev [hurd-i386]

Note that the binary package relationship fields such as Depends appear in one of the binary
package sections of the control file, whereas the build-time relationships such as Build-Depends
appear in the source package section of the control file (which is the first section).

7.2 Binary Dependencies - Depends , Recommends, Suggests ,
Enhances , Pre-Depends

Packages can declare in their control file that they have certain relationships to other packages -
for example, that they may not be installed at the same time as certain other packages, and/or that
they depend on the presence of others.

This is done using the Depends , Pre-Depends , Recommends, Suggests , Enhances and
Conflicts control file fields.

These six fields are used to declare a dependency relationship by one package on another. Except
for Enhances , they appear in the depending (binary) package’s control file. (Enhances appears
in the recommending package’s control file.)

A Depends field takes effect only when a package is to be configured. It does not prevent a
package being on the system in an unconfigured state while its dependencies are unsatisfied, and
it is possible to replace a package whose dependencies are satisfied and which is properly installed
with a different version whose dependencies are not and cannot be satisfied; when this is done

Chapter 7. Declaring relationships between packages 53

the depending package will be left unconfigured (since attempts to configure it will give errors)
and will not function properly. If it is necessary, a Pre-Depends field can be used, which has a
partial effect even when a package is being unpacked, as explained in detail below. (The other
three dependency fields, Recommends, Suggests and Enhances , are only used by the various
front-ends to dpkg such as dselect .)

For this reason packages in an installation run are usually all unpacked first and all configured
later; this gives later versions of packages with dependencies on later versions of other packages
the opportunity to have their dependencies satisfied.

The Depends field thus allows package maintainers to impose an order in which packages should
be configured.

The meaning of the five dependency fields is as follows:

Depends This declares an absolute dependency. A package will not be configured unless all of
the packages listed in its Depends field have been correctly configured.

The Depends field should be used if the depended-on package is required for the depending
package to provide a significant amount of functionality.

The Depends field should also be used if the postinst , prerm or postrm scripts require
the package to be present in order to run. Note, however, that the postrm cannot rely on
any non-essential packages to be present during the purge phase.

Recommends This declares a strong, but not absolute, dependency.

The Recommendsfield should list packages that would be found together with this one in
all but unusual installations.

Suggests This is used to declare that one package may be more useful with one or more others.
Using this field tells the packaging system and the user that the listed packages are related
to this one and can perhaps enhance its usefulness, but that installing this one without them
is perfectly reasonable.

Enhances This field is similar to Suggests but works in the opposite direction. It is used to
declare that a package can enhance the functionality of another package.

Pre-Depends This field is like Depends , except that it also forces dpkg to complete installation
of the packages named before even starting the installation of the package which declares
the pre-dependency, as follows:

When a package declaring a pre-dependency is about to be unpacked the pre-dependency can
be satisfied if the depended-on package is either fully configured, or even if the depended-on
package(s) are only unpacked or half-configured, provided that they have been configured
correctly at some point in the past (and not removed or partially removed since). In this
case, both the previously-configured and currently unpacked or half-configured versions
must satisfy any version clause in the Pre-Depends field.

Chapter 7. Declaring relationships between packages 54

When the package declaring a pre-dependency is about to be configured, the pre-dependency
will be treated as a normal Depends , that is, it will be considered satisfied only if the
depended-on package has been correctly configured.

Pre-Depends should be used sparingly, preferably only by packages whose premature up-
grade or installation would hamper the ability of the system to continue with any upgrade
that might be in progress.

Pre-Depends are also required if the preinst script depends on the named package. It is
best to avoid this situation if possible.

When selecting which level of dependency to use you should consider how important the
depended-on package is to the functionality of the one declaring the dependency. Some pack-
ages are composed of components of varying degrees of importance. Such a package should list
using Depends the package(s) which are required by the more important components. The other
components’ requirements may be mentioned as Suggestions or Recommendations, as appropri-
ate to the components’ relative importance.

7.3 Conflicting binary packages - Conflicts

When one binary package declares a conflict with another using a Conflicts field, dpkg will
refuse to allow them to be installed on the system at the same time.

If one package is to be installed, the other must be removed first - if the package being installed
is marked as replacing (see ‘Overwriting files and replacing packages - Replaces ’ on the facing
page) the one on the system, or the one on the system is marked as deselected, or both packages
are marked Essential , then dpkg will automatically remove the package which is causing the
conflict, otherwise it will halt the installation of the new package with an error. This mechanism is
specifically designed to produce an error when the installed package is Essential , but the new
package is not.

A package will not cause a conflict merely because its configuration files are still installed; it must
be at least half-installed.

A special exception is made for packages which declare a conflict with their own package name,
or with a virtual package which they provide (see below): this does not prevent their installation,
and allows a package to conflict with others providing a replacement for it. You use this feature
when you want the package in question to be the only package providing some feature.

A Conflicts entry should almost never have an “earlier than” version clause. This would pre-
vent dpkg from upgrading or installing the package which declared such a conflict until the up-
grade or removal of the conflicted-with package had been completed.

Chapter 7. Declaring relationships between packages 55

7.4 Virtual packages - Provides

As well as the names of actual (“concrete”) packages, the package relationship fields
Depends , Recommends, Suggests , Enhances , Pre-Depends , Conflicts , Build-Depends ,
Build-Depends-Indep , Build-Conflicts and Build-Conflicts-Indep may mention
“virtual packages”.

A virtual package is one which appears in the Provides control file field of another package. The
effect is as if the package(s) which provide a particular virtual package name had been listed by
name everywhere the virtual package name appears. (See also ‘Virtual packages’ on page 14)

If there are both concrete and virtual packages of the same name, then the dependency may be
satisfied (or the conflict caused) by either the concrete package with the name in question or any
other concrete package which provides the virtual package with the name in question. This is so
that, for example, supposing we have

Package: foo
Depends: bar

and someone else releases an enhanced version of the bar package (for example, a non-US vari-
ant), they can say:

Package: bar-plus
Provides: bar

and the bar-plus package will now also satisfy the dependency for the foo package.

If a dependency or a conflict has a version number attached then only real packages will be con-
sidered to see whether the relationship is satisfied (or the prohibition violated, for a conflict) - it
is assumed that a real package which provides the virtual package is not of the “right” version.
So, a Provides field may not contain version numbers, and the version number of the concrete
package which provides a particular virtual package will not be looked at when considering a
dependency on or conflict with the virtual package name.

It is likely that the ability will be added in a future release of dpkg to specify a version number for
each virtual package it provides. This feature is not yet present, however, and is expected to be
used only infrequently.

If you want to specify which of a set of real packages should be the default to satisfy a particular
dependency on a virtual package, you should list the real package as an alternative before the
virtual one.

7.5 Overwriting files and replacing packages - Replaces

Packages can declare in their control file that they should overwrite files in certain other packages,
or completely replace other packages. The Replaces control file field has these two distinct

Chapter 7. Declaring relationships between packages 56

purposes.

7.5.1 Overwriting files in other packages

Firstly, as mentioned before, it is usually an error for a package to contain files which are on the
system in another package.

However, if the overwriting package declares that it Replaces the one containing the file being
overwritten, then dpkg will replace the file from the old package with that from the new. The file
will no longer be listed as “owned” by the old package.

If a package is completely replaced in this way, so that dpkg does not know of any files it still
contains, it is considered to have “disappeared”. It will be marked as not wanted on the system
(selected for removal) and not installed. Any conffile s details noted for the package will be
ignored, as they will have been taken over by the overwriting package. The package’s postrm
script will be run with a special argument to allow the package to do any final cleanup required.
See ‘Summary of ways maintainer scripts are called’ on page 44. 1

For this usage of Replaces , virtual packages (see ‘Virtual packages - Provides ’ on the page
before) are not considered when looking at a Replaces field - the packages declared as being
replaced must be mentioned by their real names.

Furthermore, this usage of Replaces only takes effect when both packages are at least partially
on the system at once, so that it can only happen if they do not conflict or if the conflict has been
overridden.

7.5.2 Replacing whole packages, forcing their removal

Secondly, Replaces allows the packaging system to resolve which package should be removed
when there is a conflict - see ‘Conflicting binary packages - Conflicts ’ on page 54. This usage
only takes effect when the two packages do conflict, so that the two usages of this field do not
interfere with each other.

In this situation, the package declared as being replaced can be a virtual package, so for example,
all mail transport agents (MTAs) would have the following fields in their control files:

Provides: mail-transport-agent
Conflicts: mail-transport-agent
Replaces: mail-transport-agent

ensuring that only one MTA can be installed at any one time.

1Replaces is a one way relationship – you have to install the replacing package after the replaced package.

Chapter 7. Declaring relationships between packages 57

7.6 Relationships between source and binary packages -
Build-Depends , Build-Depends-Indep , Build-Conflicts ,
Build-Conflicts-Indep

Source packages that require certain binary packages to be installed or absent at the time of build-
ing the package can declare relationships to those binary packages.

This is done using the Build-Depends , Build-Depends-Indep , Build-Conflicts and
Build-Conflicts-Indep control file fields.

Build-dependencies on “build-essential” binary packages can be omitted. Please see ‘Package
relationships’ on page 19 for more information.

The dependencies and conflicts they define must be satisfied (as defined earlier for binary pack-
ages) in order to invoke the targets in debian/rules , as follows:2

Build-Depends , Build-Conflicts The Build-Depends and Build-Conflicts fields
must be satisfied when any of the following targets is invoked: build , clean , binary ,
binary-arch , build-arch , build-indep and binary-indep .

Build-Depends-Indep , Build-Conflicts-Indep The Build-Depends-Indep and
Build-Conflicts-Indep fields must be satisfied when any of the following targets is
invoked: build , build-indep , binary and binary-indep .

2If you make “build-arch” or “binary-arch”, you need Build-Depends. If you make “build-indep” or “binary-
indep”, you need Build-Depends and Build-Depends-Indep. If you make “build” or “binary”, you need both. There is
no Build-Depends-Arch; the autobuilders will only need the Build-Depends if they know how to build only build-arch
and binary-arch. Anyone building the build-indep/binary-indep targets is basically assumed to be building the whole
package and so installs all build dependencies. The purpose of the original split, I recall, was so that the autobuilders
wouldn’t need to install extra packages needed only for the binary-indep targets. But without a build-arch/build-indep
split, this didn’t work, since most of the work is done in the build target, not in the binary target.

Chapter 7. Declaring relationships between packages 58

59

Chapter 8

Shared libraries

Packages containing shared libraries must be constructed with a little care to make sure that the
shared library is always available. This is especially important for packages whose shared libraries
are vitally important, such as the C library (currently libc6).

Packages involving shared libraries should be split up into several binary packages. This section
mostly deals with how this separation is to be accomplished; rules for files within the shared
library packages are in ‘Libraries’ on page 84 instead.

8.1 Run-time shared libraries

The run-time shared library needs to be placed in a package called librarynamesoversion ,
where soversion is the version number in the soname of the shared library1. Alternatively, if it
would be confusing to directly append soversion to libraryname (e.g. because libraryname itself ends
in a number), you may use libraryname - soversion and libraryname - soversion -dev
instead.

If you have several shared libraries built from the same source tree you may lump them all to-
gether into a single shared library package, provided that you change all of their sonames at once
(so that you don’t get filename clashes if you try to install different versions of the combined
shared libraries package).

The package should install the shared libraries under their normal names. For example, the
libgdbm3 package should install libgdbm.so.3.0.0 as /usr/lib/libgdbm.so.3.0.0 .
The files should not be renamed or re-linked by any prerm or postrm scripts; dpkg will take

1The soname is the shared object name: it’s the thing that has to match exactly between building an executable and
running it for the dynamic linker to be able run the program. For example, if the soname of the library is libfoo.so.6 ,
the library package would be called libfoo6 .

Chapter 8. Shared libraries 60

care of renaming things safely without affecting running programs, and attempts to interfere with
this are likely to lead to problems.

Shared libraries should not be installed executable, since the dynamic linker does not require this
and trying to execute a shared library usually results in a core dump.

The run-time library package should include the symbolic link that ldconfig would create for
the shared libraries. For example, the libgdbm3 package should include a symbolic link from
/usr/lib/libgdbm.so.3 to libgdbm.so.3.0.0 . This is needed so that the dynamic linker
(for example ld.so or ld-linux.so.*) can find the library between the time that dpkg installs
it and the time that ldconfig is run in the postinst script.2

8.1.1 ldconfig

Any package installing shared libraries in one of the default library directories of the dy-
namic linker (which are currently /usr/lib and /lib) or a directory that is listed in /etc
/ld.so.conf 3 must use ldconfig to update the shared library system.

The package must call ldconfig in the postinst script if the first argument is configure ;
the postinst script may optionally invoke ldconfig at other times. The package should call
ldconfig in the postrm script if the first argument is remove . The maintainer scripts must not
invoke ldconfig under any circumstances other than those described in this paragraph.4

2The package management system requires the library to be placed before the symbolic link pointing to it in the
.deb file. This is so that when dpkg comes to install the symlink (overwriting the previous symlink pointing at an
older version of the library), the new shared library is already in place. In the past, this was achieved by creating the
library in the temporary packaging directory before creating the symlink. Unfortunately, this was not always effective,
since the building of the tar file in the .deb depended on the behavior of the underlying file system. Some file systems
(such as reiserfs) reorder the files so that the order of creation is forgotten. Since version 1.7.0, dpkg reorders the files
itself as necessary when building a package. Thus it is no longer important to concern oneself with the order of file
creation.

3These are currently
• /usr/X11R6/lib/Xaw3d
• /usr/local/lib
• /usr/lib/libc5-compat
• /lib/libc5-compat
• /usr/X11R6/lib

4During install or upgrade, the preinst is called before the new files are installed, so calling “ldconfig” is pointless.
The preinst of an existing package can also be called if an upgrade fails. However, this happens during the critical time
when a shared libs may exist on-disk under a temporary name. Thus, it is dangerous and forbidden by current policy
to call “ldconfig” at this time. When a package is installed or upgraded, “postinst configure” runs after the new files
are safely on-disk. Since it is perfectly safe to invoke ldconfig unconditionally in a postinst, it is OK for a package to
simply put ldconfig in its postinst without checking the argument. The postinst can also be called to recover from a
failed upgrade. This happens before any new files are unpacked, so there is no reason to call “ldconfig” at this point.
For a package that is being removed, prerm is called with all the files intact, so calling ldconfig is useless. The other
calls to “prerm” happen in the case of upgrade at a time when all the files of the old package are on-disk, so again

Chapter 8. Shared libraries 61

8.2 Run-time support programs

If your package has some run-time support programs which use the shared library you must not
put them in the shared library package. If you do that then you won’t be able to install several
versions of the shared library without getting filename clashes.

Instead, either create another package for the runtime binaries (this package might typically be
named libraryname -runtime ; note the absence of the soversion in the package name), or if the
development package is small, include them in there.

8.3 Static libraries

The static library (libraryname.a) is usually provided in addition to the shared version. It is
placed into the development package (see below).

In some cases, it is acceptable for a library to be available in static form only; these cases include:

• libraries for languages whose shared library support is immature or unstable

• libraries whose interfaces are in flux or under development (commonly the case when the
library’s major version number is zero, or where the ABI breaks across patchlevels)

• libraries which are explicitly intended to be available only in static form by their upstream
author(s)

8.4 Development files

The development files associated to a shared library need to be placed in a package called
librarynamesoversion -dev , or if you prefer only to support one development version at a
time, libraryname -dev .

In case several development versions of a library exist, you may need to use dpkg ’s Conflicts
mechanism (see ‘Conflicting binary packages - Conflicts ’ on page 54) to ensure that the user
only installs one development version at a time (as different development versions are likely to
have the same header files in them, which would cause a filename clash if both were installed).

calling “ldconfig” is pointless. postrm, on the other hand, is called with the “remove” argument just after the files are
removed, so this is the proper time to call “ldconfig” to notify the system of the fact shared libraries from the package
are removed. The postrm can be called at several other times. At the time of “postrm purge”, “postrm abort-install”,
or “postrm abort-upgrade”, calling “ldconfig” is useless because the shared lib files are not on-disk. However, when
“postrm” is invoked with arguments “upgrade”, “failed-upgrade”, or “disappear”, a shared lib may exist on-disk
under a temporary filename.

Chapter 8. Shared libraries 62

The development package should contain a symlink for the associated shared library without a
version number. For example, the libgdbm-dev package should include a symlink from /usr
/lib/libgdbm.so to libgdbm.so.3.0.0 . This symlink is needed by the linker (ld) when
compiling packages, as it will only look for libgdbm.so when compiling dynamically.

8.5 Dependencies between the packages of the same library

Typically the development version should have an exact version dependency on the runtime lib-
rary, to make sure that compilation and linking happens correctly. The ${Source-Version}
substitution variable can be useful for this purpose.

8.6 Dependencies between the library and other packages - the shlibs
system

If a package contains a binary or library which links to a shared library, we must ensure that
when the package is installed on the system, all of the libraries needed are also installed. This
requirement led to the creation of the shlibs system, which is very simple in its design: any
package which provides a shared library also provides information on the package dependencies
required to ensure the presence of this library, and any package which uses a shared library uses
this information to determine the dependencies it requires. The files which contain the mapping
from shared libraries to the necessary dependency information are called shlibs files.

Thus, when a package is built which contains any shared libraries, it must provide a shlibs file
for other packages to use, and when a package is built which contains any shared libraries or
compiled binaries, it must run dpkg-shlibdeps on these to determine the libraries used and
hence the dependencies needed by this package.5

5In the past, the shared libraries linked to were determined by calling ldd , but now objdump is used to do this. The
only change this makes to package building is that dpkg-shlibdeps must also be run on shared libraries, whereas in
the past this was unnecessary. The rest of this footnote explains the advantage that this method gives. We say that a
binary foo directly uses a library libbar if it is explicitly linked with that library (that is, it uses the flag -lbar during
the linking stage). Other libraries that are needed by libbar are linked indirectly to foo , and the dynamic linker
will load them automatically when it loads libbar . A package should depend on the libraries it directly uses, and
the dependencies for those libraries should automatically pull in the other libraries. Unfortunately, the ldd program
shows both the directly and indirectly used libraries, meaning that the dependencies determined included both direct
and indirect dependencies. The use of objdump avoids this problem by determining only the directly used libraries.
A good example of where this helps is the following. We could update libimlib with a new version that supports a
new graphics format called dgf (but retaining the same major version number). If we used the old ldd method, every
package that uses libimlib would need to be recompiled so it would also depend on libdgf or it wouldn’t run due
to missing symbols. However with the new system, packages using libimlib can rely on libimlib itself having the
dependency on libdgf and so they would not need rebuilding.

Chapter 8. Shared libraries 63

In the following sections, we will first describe where the various shlibs files are to be found,
then how to use dpkg-shlibdeps , and finally the shlibs file format and how to create them if
your package contains a shared library.

8.6.1 The shlibs files present on the system

There are several places where shlibs files are found. The following list gives them in the order
in which they are read by dpkg-shlibdeps . (The first one which gives the required information
is used.)

• debian/shlibs.local

This lists overrides for this package. Its use is described below (see ‘Writing the debian
/shlibs.local file’ on page 65).

• /etc/dpkg/shlibs.override

This lists global overrides. This list is normally empty. It is maintained by the local system
administrator.

• DEBIAN/shlibs files in the “build directory”

When packages are being built, any debian/shlibs files are copied into the control file
area of the temporary build directory and given the name shlibs . These files give details
of any shared libraries included in the package.6

• /var/lib/dpkg/info/*.shlibs

These are the shlibs files corresponding to all of the packages installed on the system, and
are maintained by the relevant package maintainers.

• /etc/dpkg/shlibs.default

This file lists any shared libraries whose packages have failed to provide correct shlibs
files. It was used when the shlibs setup was first introduced, but it is now normally empty.
It is maintained by the dpkg maintainer.

6An example may help here. Let us say that the source package foo generates two binary packages, libfoo2 and
foo-runtime . When building the binary packages, the two packages are created in the directories debian/libfoo2
and debian/foo-runtime respectively. (debian/tmp could be used instead of one of these.) Since libfoo2
provides the libfoo shared library, it will require a shlibs file, which will be installed in debian/libfoo2/DEBIAN
/shlibs , eventually to become /var/lib/dpkg/info/libfoo2.shlibs . Then when dpkg-shlibdeps is run
on the executable debian/foo-runtime/usr/bin/foo-prog , it will examine the debian/libfoo2/DEBIAN
/shlibs file to determine whether foo-prog ’s library dependencies are satisfied by any of the libraries provided
by libfoo2 . For this reason, dpkg-shlibdeps must only be run once all of the individual binary packages’ shlibs
files have been installed into the build directory.

Chapter 8. Shared libraries 64

8.6.2 How to use dpkg-shlibdeps and the shlibs files

Put a call to dpkg-shlibdeps into your debian/rules file. If your package contains only
compiled binaries and libraries (but no scripts), you can use a command such as:

dpkg-shlibdeps debian/tmp/usr/bin/* debian/tmp/usr/sbin/* \
debian/tmp/usr/lib/*

Otherwise, you will need to explicitly list the compiled binaries and libraries.7

This command puts the dependency information into the debian/substvars file, which is
then used by dpkg-gencontrol . You will need to place a ${shlib:Depends} variable in the
Depends field in the control file for this to work.

If dpkg-shlibdeps doesn’t complain, you’re done. If it does complain you might need to
create your own debian/shlibs.local file, as explained below (see ‘Writing the debian
/shlibs.local file’ on the next page).

If you have multiple binary packages, you will need to call dpkg-shlibdeps on each one which
contains compiled libraries or binaries. In such a case, you will need to use the -T option to the
dpkg utilities to specify a different substvars file.

For more details on dpkg-shlibdeps, please see ‘dpkg-shlibdeps - calculates shared library de-
pendencies’ on page 121 and dpkg-shlibdeps(1) .

8.6.3 The shlibs File Format

Each shlibs file has the same format. Lines beginning with # are considered to be comments
and are ignored. Each line is of the form:

library-name soname-version-number dependencies ...

We will explain this by reference to the example of the zlib1g package, which (at the time of
writing) installs the shared library /usr/lib/libz.so.1.1.3 .

library-name is the name of the shared library, in this case libz . (This must match the name part
of the soname, see below.)

soname-version-number is the version part of the soname of the library. The soname is the thing
that must exactly match for the library to be recognized by the dynamic linker, and is usually of
the form name.so. major-version , in our example, libz.so.1 .8 The version part is the part
which comes after .so. , so in our case, it is 1.

7If you are using debhelper , the dh_shlibdeps program will do this work for you. It will also correctly handle
multi-binary packages.

8This can be determined using the command

objdump -p /usr/lib/libz.so.1.1.3 | grep SONAME

Chapter 8. Shared libraries 65

dependencies has the same syntax as a dependency field in a binary package control file. It should
give details of which packages are required to satisfy a binary built against the version of the
library contained in the package. See ‘Syntax of relationship fields’ on page 51 for details.

In our example, if the first version of the zlib1g package which contained a minor number of at
least 1.3 was 1:1.1.3-1, then the shlibs entry for this library could say:

libz 1 zlib1g (>= 1:1.1.3)

The version-specific dependency is to avoid warnings from the dynamic linker about using older
shared libraries with newer binaries.

8.6.4 Providing a shlibs file

If your package provides a shared library, you should create a shlibs file following the format
described above. It is usual to call this file debian/shlibs (but if you have multiple binary pack-
ages, you might want to call it debian/shlibs. package instead). Then let debian/rules
install it in the control area:

install -m644 debian/shlibs debian/tmp/DEBIAN

or, in the case of a multi-binary package:

install -m644 debian/shlibs. package debian/ package /DEBIAN/shlibs

An alternative way of doing this is to create the shlibs file in the control area directly from
debian/rules without using a debian/shlibs file at all,9 since the debian/shlibs file itself
is ignored by dpkg-shlibdeps .

As dpkg-shlibdeps reads the DEBIAN/shlibs files in all of the binary packages being
built from this source package, all of the DEBIAN/shlibs files should be installed before
dpkg-shlibdeps is called on any of the binary packages.

8.6.5 Writing the debian/shlibs.local file

This file is intended only as a temporary fix if your binaries or libraries depend on a library whose
package does not yet provide a correct shlibs file.

We will assume that you are trying to package a binary foo . When you try running
dpkg-shlibdeps you get the following error message (-O displays the dependency informa-
tion on stdout instead of writing it to debian/substvars , and the lines have been wrapped
for ease of reading):

9This is what dh_makeshlibs in the debhelper suite does.

Chapter 8. Shared libraries 66

$ dpkg-shlibdeps -O debian/tmp/usr/bin/foo
dpkg-shlibdeps: warning: unable to find dependency

information for shared library libbar (soname 1,
path /usr/lib/libbar.so.1, dependency field Depends)

shlibs:Depends=libc6 (>= 2.2.2-2)

You can then run ldd on the binary to find the full location of the library concerned:

$ ldd foo
libbar.so.1 => /usr/lib/libbar.so.1 (0x4001e000)
libc.so.6 => /lib/libc.so.6 (0x40032000)
/lib/ld-linux.so.2 => /lib/ld-linux.so.2 (0x40000000)

So the foo binary depends on the libbar shared library, but no package seems to provide a
*.shlibs file handling libbar.so.1 in /var/lib/dpkg/info/ . Let’s determine the package
responsible:

$ dpkg -S /usr/lib/libbar.so.1
bar1: /usr/lib/libbar.so.1
$ dpkg -s bar1 | grep Version
Version: 1.0-1

This tells us that the bar1 package, version 1.0-1, is the one we are using. Now we can file a bug
against the bar1 package and create our own debian/shlibs.local to locally fix the problem.
Including the following line into your debian/shlibs.local file:

libbar 1 bar1 (>= 1.0-1)

should allow the package build to work.

As soon as the maintainer of bar1 provides a correct shlibs file, you should remove this
line from your debian/shlibs.local file. (You should probably also then have a versioned
Build-Depends on bar1 to help ensure that others do not have the same problem building your
package.)

67

Chapter 9

The Operating System

9.1 Filesystem hierarchy

9.1.1 Filesystem Structure

The location of all installed files and directories must comply with the Filesystem Hierarchy
Standard (FHS), version 2.1, except where doing so would violate other terms of Debian Policy.
The version of this document referred here can be found in the debian-policy package or
on FHS (Debian copy) (http://www.debian.org/doc/packaging-manuals/fhs/) along-
side this manual (or, if you have the debian-policy installed, you can try FHS (local copy)
(file:///usr/share/doc/debian-policy/fhs/)). The latest version, which may be a
more recent version, may be found on FHS (upstream) (http://www.pathname.com/fhs/).
Specific questions about following the standard may be asked on the debian-devel mailing list,
or referred to the FHS mailing list (see the FHS web site (http://www.pathname.com/fhs/)
for more information).

9.1.2 Site-specific programs

As mandated by the FHS, packages must not place any files in /usr/local , either by putting
them in the file system archive to be unpacked by dpkg or by manipulating them in their main-
tainer scripts.

However, the package may create empty directories below /usr/local so that the system ad-
ministrator knows where to place site-specific files. These directories should be removed on pack-
age removal if they are empty.

Note, that this applies only to directories below /usr/local , not in /usr/local . Packages must
not create sub-directories in the directory /usr/local itself, except those listed in FHS, section

http://www.debian.org/doc/packaging-manuals/fhs/
file:///usr/share/doc/debian-policy/fhs/
http://www.pathname.com/fhs/
http://www.pathname.com/fhs/

Chapter 9. The Operating System 68

4.5. However, you may create directories below them as you wish. You must not remove any of
the directories listed in 4.5, even if you created them.

Since /usr/local can be mounted read-only from a remote server, these directories must be
created and removed by the postinst and prerm maintainer scripts and not be included in the
.deb archive. These scripts must not fail if either of these operations fail.

For example, the emacsen-common package could contain something like

if [! -e /usr/local/share/emacs]
then

if mkdir /usr/local/share/emacs 2>/dev/null
then

chown root:staff /usr/local/share/emacs
chmod 2775 /usr/local/share/emacs

fi
fi

in its postinst script, and

rmdir /usr/local/share/emacs/site-lisp 2>/dev/null || true
rmdir /usr/local/share/emacs 2>/dev/null || true

in the prerm script. (Note that this form is used to ensure that if the script is interrupted, the
directory /usr/local/share/emacs will still be removed.)

If you do create a directory in /usr/local for local additions to a package, you should ensure
that settings in /usr/local take precedence over the equivalents in /usr .

However, because /usr/local and its contents are for exclusive use of the local administrator, a
package must not rely on the presence or absence of files or directories in /usr/local for normal
operation.

The /usr/local directory itself and all the subdirectories created by the package should (by
default) have permissions 2775 (group-writable and set-group-id) and be owned by root.staff .

9.1.3 The system-wide mail directory

The system-wide mail directory is /var/mail . This directory is part of the base system and
should not owned by any particular mail agents. The use of the old location /var/spool/mail
is deprecated, even though the spool may still be physically located there. To maintain partial
upgrade compatibility for systems which have /var/spool/mail as their physical mail spool,
packages using /var/mail must depend on either libc6 (>= 2.1.3-13), or on base-files (>=
2.2.0), or on later versions of either one of these packages.

Chapter 9. The Operating System 69

9.2 Users and groups

9.2.1 Introduction

The Debian system can be configured to use either plain or shadow passwords.

Some user ids (UIDs) and group ids (GIDs) are reserved globally for use by certain packages.
Because some packages need to include files which are owned by these users or groups, or need
the ids compiled into binaries, these ids must be used on any Debian system only for the purpose
for which they are allocated. This is a serious restriction, and we should avoid getting in the
way of local administration policies. In particular, many sites allocate users and/or local system
groups starting at 100.

Apart from this we should have dynamically allocated ids, which should by default be arranged
in some sensible order, but the behavior should be configurable.

Packages other than base-passwd must not modify /etc/passwd , /etc/shadow , /etc
/group or /etc/gshadow .

9.2.2 UID and GID classes

The UID and GID numbers are divided into classes as follows:

0-99: Globally allocated by the Debian project, the same on every Debian system. These ids will
appear in the passwd and group files of all Debian systems, new ids in this range being
added automatically as the base-passwd package is updated.

Packages which need a single statically allocated uid or gid should use one of these; their
maintainers should ask the base-passwd maintainer for ids.

100-999: Dynamically allocated system users and groups. Packages which need a user or group,
but can have this user or group allocated dynamically and differently on each system, should
use adduser --system to create the group and/or user. adduser will check for the exist-
ence of the user or group, and if necessary choose an unused id based on the ranges specified
in adduser.conf .

1000-29999: Dynamically allocated user accounts. By default adduser will choose UIDs and
GIDs for user accounts in this range, though adduser.conf may be used to modify this
behavior.

30000-59999: Reserved.

60000-64999: Globally allocated by the Debian project, but only created on demand. The ids are
allocated centrally and statically, but the actual accounts are only created on users’ systems
on demand.

Chapter 9. The Operating System 70

These ids are for packages which are obscure or which require many statically-allocated
ids. These packages should check for and create the accounts in /etc/passwd or /etc
/group (using adduser if it has this facility) if necessary. Packages which are likely to
require further allocations should have a “hole” left after them in the allocation, to give
them room to grow.

65000-65533: Reserved.

65534: User nobody . The corresponding gid refers to the group nogroup .

65535: (uid_t)(-1) == (gid_t)(-1) must not be used, because it is the error return sentinel
value.

9.3 System run levels and init.d scripts

9.3.1 Introduction

The /etc/init.d directory contains the scripts executed by init at boot time and when the init
state (or “runlevel”) is changed (see init(8)).

There are at least two different, yet functionally equivalent, ways of handling these scripts. For the
sake of simplicity, this document describes only the symbolic link method. However, it must not
be assumed by maintainer scripts that this method is being used, and any automated manipulation
of the various runlevel behaviours by maintainer scripts must be performed using update-rc.d
as described below and not by manually installing or removing symlinks. For information on the
implementation details of the other method, implemented in the file-rc package, please refer
to the documentation of that package.

These scripts are referenced by symbolic links in the /etc/rc n.d directories. When changing
runlevels, init looks in the directory /etc/rc n.d for the scripts it should execute, where n is
the runlevel that is being changed to, or S for the boot-up scripts.

The names of the links all have the form Smmscript or Kmmscript where mm is a two-digit
number and script is the name of the script (this should be the same as the name of the actual
script in /etc/init.d).

When init changes runlevel first the targets of the links whose names start with a K are executed,
each with the single argument stop , followed by the scripts prefixed with an S, each with the
single argument start . (The links are those in the /etc/rc n.d directory corresponding to the
new runlevel.) The K links are responsible for killing services and the S link for starting services
upon entering the runlevel.

For example, if we are changing from runlevel 2 to runlevel 3, init will first execute all of the K
prefixed scripts it finds in /etc/rc3.d , and then all of the S prefixed scripts in that directory.

Chapter 9. The Operating System 71

The links starting with K will cause the referred-to file to be executed with an argument of stop ,
and the S links with an argument of start .

The two-digit number mm is used to determine the order in which to run the scripts: low-
numbered links have their scripts run first. For example, the K20 scripts will be executed before
the K30 scripts. This is used when a certain service must be started before another. For example,
the name server bind might need to be started before the news server inn so that inn can set up
its access lists. In this case, the script that starts bind would have a lower number than the script
that starts inn so that it runs first:

/etc/rc2.d/S17bind
/etc/rc2.d/S70inn

The two runlevels 0 (halt) and 6 (reboot) are slightly different. In these runlevels, the links with an
S prefix are still called after those with a K prefix, but they too are called with the single argument
stop .

Also, if the script name ends .sh , the script will be sourced in runlevel S rather that being run in
a forked subprocess, but will be explicitly run by sh in all other runlevels.

9.3.2 Writing the scripts

Packages that include daemons for system services should place scripts in /etc/init.d to start
or stop services at boot time or during a change of runlevel. These scripts should be named /etc
/init.d/ package , and they should accept one argument, saying what to do:

start start the service,

stop stop the service,

restart stop and restart the service if it’s already running, otherwise start the service

reload cause the configuration of the service to be reloaded without actually stopping and re-
starting the service,

force-reload cause the configuration to be reloaded if the service supports this, otherwise
restart the service.

The start , stop , restart , and force-reload options should be supported by all scripts in
/etc/init.d , the reload option is optional.

The init.d scripts should ensure that they will behave sensibly if invoked with start when
the service is already running, or with stop when it isn’t, and that they don’t kill unfortunately-
named user processes. The best way to achieve this is usually to use start-stop-daemon .

Chapter 9. The Operating System 72

If a service reloads its configuration automatically (as in the case of cron , for example), the
reload option of the init.d script should behave as if the configuration has been reloaded
successfully.

The /etc/init.d scripts must be treated as configuration files, either (if they are present in the
package, that is, in the .deb file) by marking them as conffile s, or, (if they do not exist in the
.deb) by managing them correctly in the maintainer scripts (see ‘Configuration files’ on page 88).
This is important since we want to give the local system administrator the chance to adapt the
scripts to the local system, e.g., to disable a service without de-installing the package, or to specify
some special command line options when starting a service, while making sure her changes aren’t
lost during the next package upgrade.

These scripts should not fail obscurely when the configuration files remain but the package has
been removed, as configuration files remain on the system after the package has been removed.
Only when dpkg is executed with the --purge option will configuration files be removed. In
particular, as the /etc/init.d/ package script itself is usually a conffile , it will remain on
the system if the package is removed but not purged. Therefore, you should include a test
statement at the top of the script, like this:

test -f program-executed-later-in-script || exit 0

Often there are some variables in the init.d scripts whose values control the behaviour of the
scripts, and which a system administrator is likely to want to change. As the scripts themselves
are frequently conffile s, modifying them requires that the administrator merge in their changes
each time the package is upgraded and the conffile changes. To ease the burden on the system
administrator, such configurable values should not be placed directly in the script. Instead, they
should be placed in a file in /etc/default , which typically will have the same base name as
the init.d script. This extra file should be sourced by the script when the script runs. It must
contain only variable settings and comments in POSIX sh format. It may either be a conffile
or a configuration file maintained by the package maintainer scripts. See ‘Configuration files’ on
page 88 for more details.

To ensure that vital configurable values are always available, the init.d script should set default
values for each of the shell variables it uses, either before sourcing the /etc/default/ file or
afterwards using something like the : ${VAR:=default} syntax. Also, the init.d script
must behave sensibly and not fail if the /etc/default file is deleted.

9.3.3 Interfacing with the initscript system

Maintainers should use the abstraction layer provided by the update-rc.d and invoke-rc.d
programs to deal with initscripts in their packages’ scripts such as postinst , prerm and postrm .

Directly managing the /etc/rc?.d links and directly invoking the /etc/init.d/ initscripts
should be done only by packages providing the initscript subsystem (such as sysv-rc and
file-rc).

Chapter 9. The Operating System 73

Managing the links

The program update-rc.d is provided for package maintainers to arrange for the proper cre-
ation and removal of /etc/rc n.d symbolic links, or their functional equivalent if another
method is being used. This may be used by maintainers in their packages’ postinst and postrm
scripts.

You must not include any /etc/rc n.d symbolic links in the actual archive or manually create
or remove the symbolic links in maintainer scripts; you must use the update-rc.d program
instead. (The former will fail if an alternative method of maintaining runlevel information is
being used.) You must not include the /etc/rc n.d directories themselves in the archive either.
(Only the sysvinit package may do so.)

By default update-rc.d will start services in each of the multi-user state runlevels (2, 3, 4, and 5)
and stop them in the halt runlevel (0), the single-user runlevel (1) and the reboot runlevel (6). The
system administrator will have the opportunity to customize runlevels by simply adding, moving,
or removing the symbolic links in /etc/rc n.d if symbolic links are being used, or by modifying
/etc/runlevel.conf if the file-rc method is being used.

To get the default behavior for your package, put in your postinst script

update-rc.d package defaults

and in your postrm

if ["$1" = purge]; then
update-rc.d package remove
fi

. Note that if your package changes runlevels or priority, you may have to remove and recreate the
links, since otherwise the old links may persist. Refer to the documentation of update-rc.d .

This will use a default sequence number of 20. If it does not matter when or in which order the
init.d script is run, use this default. If it does, then you should talk to the maintainer of the
sysvinit package or post to debian-devel , and they will help you choose a number.

For more information about using update-rc.d , please consult its man page update-rc.d(8) .

Running initscripts

The program invoke-rc.d is provided to make it easier for package maintainers to properly in-
voke an initscript, obeying runlevel and other locally-defined constraints that might limit a pack-
age’s right to start, stop and otherwise manage services. This program may be used by maintainers
in their packages’ scripts.

Chapter 9. The Operating System 74

The use of invoke-rc.d to invoke the /etc/init.d/* initscripts is strongly recommended1,
instead of calling them directly.

By default, invoke-rc.d will pass any action requests (start, stop, reload, restart. . .) to the /etc
/init.d script, filtering out requests to start or restart a service out of its intended runlevels.

Most packages will simply need to change:

/etc/init.d/<package>
<action>

in their postinst and prerm scripts to:

if command -v invoke-rc.d >/dev/null 2>&1; then
invoke-rc.d package <action>
else
/etc/init.d/ package <action>
fi

A package should register its initscript services using update-rc.d before it tries to invoke them
using invoke-rc.d . Invocation of unregistered services may fail.

For more information about using invoke-rc.d , please consult its man page invoke-rc.d(8) .

9.3.4 Boot-time initialization

There used to be another directory, /etc/rc.boot , which contained scripts which were run
once per machine boot. This has been deprecated in favour of links from /etc/rcS.d to files in
/etc/init.d as described in ‘Introduction’ on page 70. Packages must not place files in /etc
/rc.boot .

9.3.5 Example

The bind DNS (nameserver) package wants to make sure that the nameserver is running in mul-
tiuser runlevels, and is properly shut down with the system. It puts a script in /etc/init.d ,
naming the script appropriately bind . As you can see, the script interprets the argument reload
to send the nameserver a HUPsignal (causing it to reload its configuration); this way the system
administrator can say /etc/init.d/bind reload to reload the name server. The script has
one configurable value, which can be used to pass parameters to the named program at startup;
this value is read from /etc/default/bind (see below).

1In the future, the use of invoke-rc.d to invoke initscripts shall be made mandatory. Maintainers are advised to
switch to invoke-rc.d as soon as possible.

Chapter 9. The Operating System 75

#!/bin/sh
#
Original version by Robert Leslie
<rob@mars.org>, edited by iwj and cs

test -x /usr/sbin/named || exit 0

Source defaults file.
PARAMS=’’
if [-f /etc/default/bind]; then

. /etc/default/bind
fi

case "$1" in
start)

echo -n "Starting domain name service: named"
start-stop-daemon --start --quiet --exec /usr/sbin/named \

-- $PARAMS
echo "."
;;

stop)
echo -n "Stopping domain name service: named"
start-stop-daemon --stop --quiet \

--pidfile /var/run/named.pid --exec /usr/sbin/named
echo "."
;;

restart)
echo -n "Restarting domain name service: named"
start-stop-daemon --stop --quiet --oknodo \

--pidfile /var/run/named.pid --exec /usr/sbin/named
start-stop-daemon --start --verbose --exec /usr/sbin/named \

-- $PARAMS
echo "."
;;

force-reload|reload)
echo -n "Reloading configuration of domain name service: named"
start-stop-daemon --stop --signal 1 --quiet \

--pidfile /var/run/named.pid --exec /usr/sbin/named
echo "."
;;

*)

Chapter 9. The Operating System 76

echo "Usage: /etc/init.d/bind " \
" {start|stop|restart|reload|force-reload}" >&2

exit 1
;;

esac

exit 0

Complementing the above init script is a configuration file /etc/default/bind , which contains
configurable parameters used by the script. This would be created by the postinst script if it
was not already present, and removed on purge by the postrm script.

Specified parameters to pass to named. See named(8).
You may uncomment the following line, and edit to taste.
#PARAMS="-u nobody"

Another example on which you can base your /etc/init.d scripts is found in /etc/init.d
/skeleton .

If this package is happy with the default setup from update-rc.d , namely an ordering number
of 20 and having named running in all runlevels, it can say in its postinst :

update-rc.d bind defaults >/dev/null

And in its postrm , to remove the links when the package is purged:

if ["$1" = purge]; then
update-rc.d bind remove >/dev/null

fi

9.4 Console messages from init.d scripts

This section describes the formats to be used for messages written to standard output by the /etc
/init.d scripts. The intent is to improve the consistency of Debian’s startup and shutdown look
and feel. For this reason, please look very carefully at the details. We want the messages to have
the same format in terms of wording, spaces, punctuation and case of letters.

Here is a list of overall rules that you should use when you create output messages. They can be
useful if you have a non-standard message that is not covered specifically in the sections below.

• Every message should fit in one line (fewer than 80 characters), start with a capital letter and
end with a period (.) and line feed (“\n”).

Chapter 9. The Operating System 77

• If you want to express that the computer is working on something (that is, performing a
specific task, not starting or stopping a program), we use an “ellipsis” (three dots: ...).
Note that we don’t insert spaces before or after the dots. If the task has been completed we
write done. and a line feed.

• Design your messages as if the computer is telling you what he is doing (let him be polite
:-), but don’t mention “him” directly. For example, if you think of saying

I’m starting network daemons: nfsd mountd.

just say

Starting network daemons: nfsd mountd.

There are standard message formats for the following situations. They should be used by the
init.d scripts.

• When daemons are started

If your script starts one or more daemons, the output should look like this (a single line, no
leading spaces):

Starting description : daemon-1 ... daemon-n .

The description should describe the subsystem the daemon or set of daemons are part of,
while daemon-1 up to daemon-n denote each daemon’s name (typically the file name of the
program).

For example, the output of /etc/init.d/lpd would look like:

Starting printer spooler: lpd.

This can be achieved by saying

echo -n "Starting printer spooler: lpd"
start-stop-daemon --start --quiet --exec /usr/sbin/lpd
echo "."

in the script. If you have more than one daemon to start, you should do the following:

echo -n "Starting remote file system services:"
echo -n " nfsd"; start-stop-daemon --start --quiet nfsd
echo -n " mountd"; start-stop-daemon --start --quiet mountd
echo -n " ugidd"; start-stop-daemon --start --quiet ugidd
echo "."

Chapter 9. The Operating System 78

This makes it possible for the user to see what takes so long and when the final daemon has
been started. You should be careful where to put spaces: in the example above the system
administrator can easily comment out a line if he don’t wants to start a specific daemon,
while the displayed message still looks good.

• When a system parameter is being set

If you have to set up different system parameters during the system boot, you should use
this format:

Setting parameter to " value ".

You can use a statement such as the following to get the quotes right:

echo "Setting DNS domainname to \"$domainname\"."

Note that the same symbol (“) is used for the left and right quotation marks. A grave accent
(‘) is not a quote character; neither is an apostrophe (’).

• When a daemon is stopped or restarted

When you stop or restart a daemon, you should issue a message identical to the startup
message, except that Starting is replaced with Stopping or Restarting respectively.

For example, stopping the printer daemon will like like this:

Stopping printer spooler: lpd.

• When something is executed

There are several examples where you have to run a program at system startup or shutdown
to perform a specific task, for example, setting the system’s clock using netdate or killing
all processes when the system shuts down. Your message should look like this:

Doing something very useful...done.

You should print the done. immediately after the job has been completed, so that the user
is informed why she has to wait. You can get this behavior by saying

echo -n "Doing something very useful..."
do_something
echo "done."

in your script.

• When the configuration is reloaded

When a daemon is forced to reload its configuration files you should use the following
format:

Reloading description configuration...done.

where description is the same as in the daemon starting message.

Chapter 9. The Operating System 79

9.5 Cron jobs

Packages must not modify the configuration file /etc/crontab , and they must not modify the
files in /var/spool/cron/crontabs .

If a package wants to install a job that has to be executed via cron, it should place a file with the
name of the package in one or more of the following directories:

/etc/cron.daily
/etc/cron.weekly
/etc/cron.monthly

As these directory names imply, the files within them are executed on a daily, weekly, or monthly
basis, respectively. The exact times are listed in /etc/crontab .

All files installed in any of these directories must be scripts (e.g., shell scripts or Perl scripts) so
that they can easily be modified by the local system administrator. In addition, they should be
treated as configuration files.

If a certain job has to be executed more frequently than daily, the package should install a file
/etc/cron.d/ package . This file uses the same syntax as /etc/crontab and is processed by
cron automatically. The file must also be treated as a configuration file. (Note that entries in the
/etc/cron.d directory are not handled by anacron . Thus, you should only use this directory
for jobs which may be skipped if the system is not running.)

The scripts or crontab entries in these directories should check if all necessary programs are in-
stalled before they try to execute them. Otherwise, problems will arise when a package was re-
moved but not purged since configuration files are kept on the system in this situation.

9.6 Menus

The Debian menupackage provides a standard interface between packages providing applications
and documents, and menu programs (either X window managers or text-based menu programs
such as pdmenu).

All packages that provide applications that need not be passed any special command line argu-
ments for normal operation should register a menu entry for those applications, so that users of
the menupackage will automatically get menu entries in their window managers, as well in shells
like pdmenu.

Menu entries should follow the current menu policy.

The menu policy can be found in the menu-policy files in the debian-policy package. It
is also available from the Debian web mirrors at /doc/packaging-manuals/menu-policy/
(http://www.debian.org/doc/packaging-manuals/menu-policy/) .

http://www.debian.org/doc/packaging-manuals/menu-policy/

Chapter 9. The Operating System 80

Please also refer to the Debian Menu System documentation that comes with the menu package for
information about how to register your applications and web documents.

9.7 Multimedia handlers

MIME (Multipurpose Internet Mail Extensions, RFCs 2045-2049) is a mechanism for encoding files
and data streams and providing meta-information about them, in particular their type (e.g. audio
or video) and format (e.g. PNG, HTML, MP3).

Registration of MIME type handlers allows programs like mail user agents and web browsers to
invoke these handlers to view, edit or display MIME types they don’t support directly.

Packages which provide the ability to view/show/play, compose, edit or print MIME types
should register themselves as such following the current MIME support policy.

The MIME support policy can be found in the mime-policy files in the
debian-policy package. It is also available from the Debian web mirrors at
/doc/packaging-manuals/mime-policy/ (http://www.debian.org/doc/
packaging-manuals/mime-policy/) .

9.8 Keyboard configuration

To achieve a consistent keyboard configuration so that all applications interpret a keyboard event
the same way, all programs in the Debian distribution must be configured to comply with the
following guidelines.

The following keys must have the specified interpretations:

<-- delete the character to the left of the cursor

Delete delete the character to the right of the cursor

Control+H emacs: the help prefix

The interpretation of any keyboard events should be independent of the terminal that is used, be
it a virtual console, an X terminal emulator, an rlogin/telnet session, etc.

The following list explains how the different programs should be set up to achieve this:

• <-- generates KB_BackSpace in X.

• Delete generates KB_Delete in X.

http://www.debian.org/doc/packaging-manuals/mime-policy/
http://www.debian.org/doc/packaging-manuals/mime-policy/

Chapter 9. The Operating System 81

• X translations are set up to make KB_Backspace generate ASCII DEL, and to make
KB_Delete generate ESC [3 ~ (this is the vt220 escape code for the ”delete character“
key). This must be done by loading the X resources using xrdb on all local X displays,
not using the application defaults, so that the translation resources used correspond to the
xmodmapsettings.

• The Linux console is configured to make <-- generate DEL, and Delete generate ESC [
3 ~.

• X applications are configured so that < deletes left, and Delete deletes right. Motif applic-
ations already work like this.

• Terminals should have stty erase ^? .

• The xterm terminfo entry should have ESC [3 ~ for kdch1 , just as for TERM=linux and
TERM=vt220 .

• Emacs is programmed to map KB_Backspace or the stty erase character to
delete-backward-char , and KB_Delete or kdch1 to delete-forward-char , and ^H
to help as always.

• Other applications use the stty erase character and kdch1 for the two delete keys, with
ASCII DEL being ”delete previous character“ and kdch1 being ”delete character under
cursor“.

This will solve the problem except for the following cases:

• Some terminals have a <-- key that cannot be made to produce anything except ^H. On these
terminals Emacs help will be unavailable on ^H (assuming that the stty erase character
takes precedence in Emacs, and has been set correctly). M-x help or F1 (if available) can
be used instead.

• Some operating systems use ^H for stty erase . However, modern telnet versions and
all rlogin versions propagate stty settings, and almost all UNIX versions honour stty
erase . Where the stty settings are not propagated correctly, things can be made to work
by using stty manually.

• Some systems (including previous Debian versions) use xmodmap to arrange for both <--
and Delete to generate KB_Delete . We can change the behavior of their X clients using the
same X resources that we use to do it for our own clients, or configure our clients using their
resources when things are the other way around. On displays configured like this Delete
will not work, but <-- will.

• Some operating systems have different kdch1 settings in their terminfo database for
xterm and others. On these systems the Delete key will not work correctly when you
log in from a system conforming to our policy, but <-- will.

Chapter 9. The Operating System 82

9.9 Environment variables

A program must not depend on environment variables to get reasonable defaults. (That’s because
these environment variables would have to be set in a system-wide configuration file like /etc
/profile , which is not supported by all shells.)

If a program usually depends on environment variables for its configuration, the program should
be changed to fall back to a reasonable default configuration if these environment variables are not
present. If this cannot be done easily (e.g., if the source code of a non-free program is not avail-
able), the program must be replaced by a small ”wrapper“ shell script which sets the environment
variables if they are not already defined, and calls the original program.

Here is an example of a wrapper script for this purpose:

#!/bin/sh
BAR=${BAR:-/var/lib/fubar}
export BAR
exec /usr/lib/foo/foo "$@"

Furthermore, as /etc/profile is a configuration file of the base-files package, other pack-
ages must not put any environment variables or other commands into that file.

83

Chapter 10

Files

10.1 Binaries

Two different packages must not install programs with different functionality but with the same
filenames. (The case of two programs having the same functionality but different implementations
is handled via ”alternatives“ or the ”Conflicts“ mechanism. See ‘Maintainer Scripts’ on page 15
and ‘Conflicting binary packages - Conflicts ’ on page 54 respectively.) If this case happens,
one of the programs must be renamed. The maintainers should report this to the debian-devel
mailing list and try to find a consensus about which program will have to be renamed. If a con-
sensus cannot be reached, both programs must be renamed.

By default, when a package is being built, any binaries created should include debugging inform-
ation, as well as being compiled with optimization. You should also turn on as many reasonable
compilation warnings as possible; this makes life easier for porters, who can then look at build logs
for possible problems. For the C programming language, this means the following compilation
parameters should be used:

CC = gcc
CFLAGS = -O2 -g -Wall # sane warning options vary between programs
LDFLAGS = # none
install -s # (or use strip on the files in debian/tmp)

Note that by default all installed binaries should be stripped, either by using the -s flag to
install , or by calling strip on the binaries after they have been copied into debian/tmp
but before the tree is made into a package.

Although binaries in the build tree should be compiled with debugging information by de-
fault, it can often be difficult to debug programs if they are also subjected to compiler optim-
ization. For this reason, it is recommended to support the standardized environment variable

Chapter 10. Files 84

DEB_BUILD_OPTIONS. This variable can contain several flags to change how a package is com-
piled and built.

noopt The presence of this string means that the package should be compiled with a minimum
of optimization. For C programs, it is best to add -O0 to CFLAGS(although this is usually
the default). Some programs might fail to build or run at this level of optimization; it may
be necessary to use -O1 , for example.

nostrip This string means that the debugging symbols should not be stripped from the binary
during installation, so that debugging information may be included in the package.

The following makefile snippet is an example of how one may implement the build options; you
will probably have to massage this example in order to make it work for your package.

CFLAGS = -Wall -g
INSTALL = install
INSTALL_FILE = $(INSTALL) -p -o root -g root -m 644
INSTALL_PROGRAM = $(INSTALL) -p -o root -g root -m 755
INSTALL_SCRIPT = $(INSTALL) -p -o root -g root -m 755
INSTALL_DIR = $(INSTALL) -p -d -o root -g root -m 755

ifneq (,$(findstring noopt,$(DEB_BUILD_OPTIONS)))
CFLAGS += -O0
else
CFLAGS += -O2
endif
ifeq (,$(findstring nostrip,$(DEB_BUILD_OPTIONS)))
INSTALL_PROGRAM += -s
endif

It is up to the package maintainer to decide what compilation options are best for the package.
Certain binaries (such as computationally-intensive programs) will function better with certain
flags (-O3 , for example); feel free to use them. Please use good judgment here. Don’t use flags for
the sake of it; only use them if there is good reason to do so. Feel free to override the upstream
author’s ideas about which compilation options are best: they are often inappropriate for our
environment.

10.2 Libraries

The shared version of a library must be compiled with -fPIC , and the static version must not be.
In other words, each source unit (*.c , for example, for C files) will need to be compiled twice.

Chapter 10. Files 85

You must specify the gcc option -D_REENTRANTwhen building a library (either static or shared)
to make the library compatible with LinuxThreads.

Although not enforced by the build tools, shared libraries must be linked against all libraries that
they use symbols from in the same way that binaries are. This ensures the correct functioning of
the shlibs system and guarantees that all libraries can be safely opened with dlopen() . Packagers
may wish to use the gcc option -Wl,-z,defs when building a shared library. Since this option
enforces symbol resolution at build time, a missing library reference will be caught early as a fatal
build error.

All installed shared libraries should be stripped with

strip --strip-unneeded your-lib

(The option --strip-unneeded makes strip remove only the symbols which aren’t needed
for relocation processing.) Shared libraries can function perfectly well when stripped, since the
symbols for dynamic linking are in a separate part of the ELF object file.1

Note that under some circumstances it may be useful to install a shared library unstripped, for
example when building a separate package to support debugging.

Shared object files (often .so files) that are not public libraries, that is, they are not meant to be
linked to by third party executables (binaries of other packages), should be installed in subdirect-
ories of the /usr/lib directory. Such files are exempt from the rules that govern ordinary shared
libraries, except that they must not be installed executable and should be stripped.2

Packages containing shared libraries that may be linked to by other packages’ binaries, but which
for some compelling reason can not be installed in /usr/lib directory, may install the shared
library files in subdirectories of the /usr/lib directory, in which case they should arrange to add
that directory in /etc/ld.so.conf in the package’s post-installation script, and remove it in the
package’s post-removal script.

An ever increasing number of packages are using libtool to do their linking. The latest GNU
libtools (>= 1.3a) can take advantage of the metadata in the installed libtool archive files (*.la
files). The main advantage of libtool ’s .la files is that it allows libtool to store and sub-
sequently access metadata with respect to the libraries it builds. libtool will search for those
files, which contain a lot of useful information about a library (such as library dependency inform-
ation for static linking). Also, they’re essential for programs using libltdl .3

1You might also want to use the options --remove-section=.comment and --remove-section=.note on
both shared libraries and executables, and --strip-debug on static libraries.

2A common example are the so-called ”plug-ins“, internal shared objects that are dynamically loaded by programs
using dlopen(3) .

3Although libtool is fully capable of linking against shared libraries which don’t have .la files, as it is a mere
shell script it can add considerably to the build time of a libtool -using package if that shell script has to derive all this
information from first principles for each library every time it is linked. With the advent of libtool version 1.4 (and
to a lesser extent libtool version 1.3), the .la files also store information about inter-library dependencies which
cannot necessarily be derived after the .la file is deleted.

Chapter 10. Files 86

Packages that use libtool to create shared libraries should include the .la files in the -dev
package, unless the package relies on libtool ’s libltdl library, in which case the .la files
must go in the run-time library package.

You must make sure that you use only released versions of shared libraries to build your packages;
otherwise other users will not be able to run your binaries properly. Producing source packages
that depend on unreleased compilers is also usually a bad idea.

10.3 Shared libraries

This section has moved to ‘Shared libraries’ on page 59.

10.4 Scripts

All command scripts, including the package maintainer scripts inside the package and used by
dpkg , should have a #! line naming the shell to be used to interpret them.

In the case of Perl scripts this should be #!/usr/bin/perl .

Shell scripts (sh and bash) should almost certainly start with set -e so that errors are detected.
Every script should use set -e or check the exit status of every command.

The standard shell interpreter /bin/sh can be a symbolic link to any POSIX compatible shell,
if echo -n does not generate a newline.4 Thus, shell scripts specifying /bin/sh as interpreter
should only use POSIX features. If a script requires non-POSIX features from the shell interpreter,
the appropriate shell must be specified in the first line of the script (e.g., #!/bin/bash) and the
package must depend on the package providing the shell (unless the shell package is marked
”Essential“, as in the case of bash).

You may wish to restrict your script to POSIX features when possible so that it may use /bin
/sh as its interpreter. If your script works with dash (originally called ash), it’s probably POSIX
compliant, but if you are in doubt, use /bin/bash .

Perl scripts should check for errors when making any system calls, including open , print ,
close , rename and system .

csh and tcsh should be avoided as scripting languages. See Csh Programming Considered Harm-
ful, one of the comp.unix.* FAQs, which can be found at http://www.faqs.org/faqs/
unix-faq/shell/csh-whynot/ . If an upstream package comes with csh scripts then you

4Debian policy specifies POSIX behavior for /bin/sh , but echo -n has widespread use in the Linux community
(in particular including this policy, the Linux kernel source, many Debian scripts, etc.). This echo -n mechanism is
valid but not required under POSIX, hence this explicit addition. Also, rumour has it that this shall be mandated under
the LSB anyway.

http://www.faqs.org/faqs/unix-faq/shell/csh-whynot/
http://www.faqs.org/faqs/unix-faq/shell/csh-whynot/

Chapter 10. Files 87

must make sure that they start with #!/bin/csh and make your package depend on the
c-shell virtual package.

Any scripts which create files in world-writeable directories (e.g., in /tmp) must use a mechanism
which will fail if a file with the same name already exists.

The Debian base system provides the tempfile and mktemp utilities for use by scripts for this
purpose.

10.5 Symbolic links

In general, symbolic links within a top-level directory should be relative, and symbolic links point-
ing from one top-level directory into another should be absolute. (A top-level directory is a sub-
directory of the root directory / .)

In addition, symbolic links should be specified as short as possible, i.e., link targets like foo/..
/bar are deprecated.

Note that when creating a relative link using ln it is not necessary for the target of the link to exist
relative to the working directory you’re running ln from, nor is it necessary to change directory
to the directory where the link is to be made. Simply include the string that should appear as the
target of the link (this will be a pathname relative to the directory in which the link resides) as the
first argument to ln .

For example, in your Makefile or debian/rules , you can do things like:

ln -fs gcc $(prefix)/bin/cc
ln -fs gcc debian/tmp/usr/bin/cc
ln -fs ../sbin/sendmail $(prefix)/bin/runq
ln -fs ../sbin/sendmail debian/tmp/usr/bin/runq

A symbolic link pointing to a compressed file should always have the same file extension as the
referenced file. (For example, if a file foo.gz is referenced by a symbolic link, the filename of the
link has to end with ”.gz “ too, as in bar.gz .)

10.6 Device files

Packages must not include device files in the package file tree.

If a package needs any special device files that are not included in the base system, it must call
MAKEDEVin the postinst script, after notifying the user5.

5This notification could be done via a (low-priority) debconf message, or an echo (printf) statement.

Chapter 10. Files 88

Packages must not remove any device files in the postrm or any other script. This is left to the
system administrator.

Debian uses the serial devices /dev/ttyS* . Programs using the old /dev/cu* devices should
be changed to use /dev/ttyS* .

10.7 Configuration files

10.7.1 Definitions

configuration file A file that affects the operation of a program, or provides site- or host-specific
information, or otherwise customizes the behavior of a program. Typically, configuration
files are intended to be modified by the system administrator (if needed or desired) to con-
form to local policy or to provide more useful site-specific behavior.

conffile A file listed in a package’s conffiles file, and is treated specially by dpkg (see ‘De-
tails of configuration’ on page 48).

The distinction between these two is important; they are not interchangeable concepts. Almost all
conffile s are configuration files, but many configuration files are not conffiles .

Note that a script that embeds configuration information (such as most of the files in /etc
/default and /etc/cron.{daily,weekly,monthly}) is de-facto a configuration file and
should be treated as such.

10.7.2 Location

Any configuration files created or used by your package must reside in /etc . If there are several,
consider creating a subdirectory of /etc named after your package.

If your package creates or uses configuration files outside of /etc , and it is not feasible to modify
the package to use /etc directly, put the files in /etc and create symbolic links to those files from
the location that the package requires.

10.7.3 Behavior

Configuration file handling must conform to the following behavior:
• local changes must be preserved during a package upgrade, and
• configuration files must be preserved when the package is removed, and only deleted when

the package is purged.

Chapter 10. Files 89

The easy way to achieve this behavior is to make the configuration file a conffile . This is ap-
propriate only if it is possible to distribute a default version that will work for most installations,
although some system administrators may choose to modify it. This implies that the default ver-
sion will be part of the package distribution, and must not be modified by the maintainer scripts
during installation (or at any other time).

In order to ensure that local changes are preserved correctly, no package may contain or make
hard links to conffiles.6

The other way to do it is via the maintainer scripts. In this case, the configuration file must not be
listed as a conffile and must not be part of the package distribution. If the existence of a file is
required for the package to be sensibly configured it is the responsibility of the package maintainer
to provide maintainer scripts which correctly create, update and maintain the file and remove
it on purge. (See ‘Package maintainer scripts and installation procedure’ on page 43 for more
information.) These scripts must be idempotent (i.e., must work correctly if dpkg needs to re-run
them due to errors during installation or removal), must cope with all the variety of ways dpkg can
call maintainer scripts, must not overwrite or otherwise mangle the user’s configuration without
asking, must not ask unnecessary questions (particularly during upgrades), and otherwise be
good citizens.

The scripts are not required to configure every possible option for the package, but only those
necessary to get the package running on a given system. Ideally the sysadmin should not have to
do any configuration other than that done (semi-)automatically by the postinst script.

A common practice is to create a script called package -configure and have the package’s
postinst call it if and only if the configuration file does not already exist. In certain cases it
is useful for there to be an example or template file which the maintainer scripts use. Such files
should be in /usr/share/ package or /usr/lib/ package (depending on whether they are
architecture-independent or not). There should be symbolic links to them from /usr/share/doc
/ package /examples if they are examples, and should be perfectly ordinary dpkg -handled files
(not configuration files).

These two styles of configuration file handling must not be mixed, for that way lies madness:
dpkg will ask about overwriting the file every time the package is upgraded.

10.7.4 Sharing configuration files

Packages which specify the same file as a conffile must be tagged as conflicting with each other.
(This is an instance of the general rule about not sharing files. Note that neither alternatives nor
diversions are likely to be appropriate in this case; in particular, dpkg does not handle diverted
conffile s well.)

6Rationale: There are two problems with hard links. The first is that some editors break the link while editing one
of the files, so that the two files may unwittingly become unlinked and different. The second is that dpkg might break
the hard link while upgrading conffile s.

Chapter 10. Files 90

The maintainer scripts must not alter a conffile of any package, including the one the scripts
belong to.

If two or more packages use the same configuration file and it is reasonable for both to be installed
at the same time, one of these packages must be defined as owner of the configuration file, i.e., it
will be the package which handles that file as a configuration file. Other packages that use the
configuration file must depend on the owning package if they require the configuration file to
operate. If the other package will use the configuration file if present, but is capable of operating
without it, no dependency need be declared.

If it is desirable for two or more related packages to share a configuration file and for all of the
related packages to be able to modify that configuration file, then the following should be done:

1 One of the related packages (the ”owning“ package) will manage the configuration file with
maintainer scripts as described in the previous section.

2 The owning package should also provide a program that the other packages may use to
modify the configuration file.

3 The related packages must use the provided program to make any desired modifications to
the configuration file. They should either depend on the core package to guarantee that the
configuration modifier program is available or accept gracefully that they cannot modify the
configuration file if it is not. (This is in addition to the fact that the configuration file may
not even be present in the latter scenario.)

Sometimes it’s appropriate to create a new package which provides the basic infrastructure for the
other packages and which manages the shared configuration files. (The sgml-base package is a
good example.)

10.7.5 User configuration files (”dotfiles“)

The files in /etc/skel will automatically be copied into new user accounts by adduser . No
other program should reference the files in /etc/skel .

Therefore, if a program needs a dotfile to exist in advance in $HOMEto work sensibly, that dotfile
should be installed in /etc/skel and treated as a configuration file.

However, programs that require dotfiles in order to operate sensibly are a bad thing, unless they
do create the dotfiles themselves automatically.

Furthermore, programs should be configured by the Debian default installation to behave as
closely to the upstream default behaviour as possible.

Therefore, if a program in a Debian package needs to be configured in some way in order to
operate sensibly, that should be done using a site-wide configuration file placed in /etc . Only if
the program doesn’t support a site-wide default configuration and the package maintainer doesn’t
have time to add it may a default per-user file be placed in /etc/skel .

Chapter 10. Files 91

/etc/skel should be as empty as we can make it. This is particularly true because there is no
easy (or necessarily desirable) mechanism for ensuring that the appropriate dotfiles are copied
into the accounts of existing users when a package is installed.

10.8 Log files

Log files should usually be named /var/log/ package .log . If you have many log files, or need
a separate directory for permission reasons (/var/log is writable only by root), you should
usually create a directory named /var/log/ package and place your log files there.

Log files must be rotated occasionally so that they don’t grow indefinitely; the best way to do
this is to drop a log rotation configuration file into the directory /etc/logrotate.d and use
the facilities provided by logrotate.7 Here is a good example for a logrotate config file (for more
information see logrotate(8)):

/var/log/foo/*.log {
rotate 12
weekly
compress
postrotate
/etc/init.d/foo force-reload
endscript
}

This rotates all files under /var/log/foo , saves 12 compressed generations, and forces the dae-
mon to reload its configuration information after the log rotation.

Log files should be removed when the package is purged (but not when it is only removed). This
should be done by the postrm script when it is called with the argument purge (see ‘Details of
removal and/or configuration purging’ on page 48).

10.9 Permissions and owners

The rules in this section are guidelines for general use. If necessary you may deviate from the
details below. However, if you do so you must make sure that what is done is secure and you

7The traditional approach to log files has been to set up ad hoc log rotation schemes using simple shell scripts and
cron. While this approach is highly customizable, it requires quite a lot of sysadmin work. Even though the original
Debian system helped a little by automatically installing a system which can be used as a template, this was deemed
not enough. The use of logrotate , a program developed by Red Hat, is better, as it centralizes log management. It
has both a configuration file (/etc/logrotate.conf) and a directory where packages can drop their individual log
rotation configurations (/etc/logrotate.d).

Chapter 10. Files 92

should try to be as consistent as possible with the rest of the system. You should probably also
discuss it on debian-devel first.

Files should be owned by root.root , and made writable only by the owner and universally
readable (and executable, if appropriate), that is mode 644 or 755.

Directories should be mode 755 or (for group-writability) mode 2775. The ownership of the dir-
ectory should be consistent with its mode: if a directory is mode 2775, it should be owned by the
group that needs write access to it.

Setuid and setgid executables should be mode 4755 or 2755 respectively, and owned by the ap-
propriate user or group. They should not be made unreadable (modes like 4711 or 2711 or even
4111); doing so achieves no extra security, because anyone can find the binary in the freely avail-
able Debian package; it is merely inconvenient. For the same reason you should not restrict read
or execute permissions on non-set-id executables.

Some setuid programs need to be restricted to particular sets of users, using file permissions. In
this case they should be owned by the uid to which they are set-id, and by the group which should
be allowed to execute them. They should have mode 4754; again there is no point in making them
unreadable to those users who must not be allowed to execute them.

It is possible to arrange that the system administrator can reconfigure the package to correspond
to their local security policy by changing the permissions on a binary: they can do this by using
dpkg-statoverride , as described below.8 Another method you should consider is to create a
group for people allowed to use the program(s) and make any setuid executables executable only
by that group.

If you need to create a new user or group for your package there are two possibilities. Firstly, you
may need to make some files in the binary package be owned by this user or group, or you may
need to compile the user or group id (rather than just the name) into the binary (though this latter
should be avoided if possible, as in this case you need a statically allocated id).

If you need a statically allocated id, you must ask for a user or group id from the base-passwd
maintainer, and must not release the package until you have been allocated one. Once you have
been allocated one you must either make the package depend on a version of the base-passwd
package with the id present in /etc/passwd or /etc/group , or arrange for your package to
create the user or group itself with the correct id (using adduser) in its preinst or postinst .
(Doing it in the postinst is to be preferred if it is possible, otherwise a pre-dependency will be
needed on the adduser package.)

On the other hand, the program might be able to determine the uid or gid from the user or group
name at runtime, so that a dynamically allocated id can be used. In this case you should choose

8Ordinary files installed by dpkg (as opposed to conffile s and other similar objects) normally have their permis-
sions reset to the distributed permissions when the package is reinstalled. However, the use of dpkg-statoverride
overrides this default behaviour. If you use this method, you should remember to describe dpkg-statoverride in
the package documentation; being a relatively new addition to Debian, it is probably not yet well-known.

Chapter 10. Files 93

an appropriate user or group name, discussing this on debian-devel and checking with the
base-passwd maintainer that it is unique and that they do not wish you to use a statically alloc-
ated id instead. When this has been checked you must arrange for your package to create the user
or group if necessary using adduser in the preinst or postinst script (again, the latter is to
be preferred if it is possible).

Note that changing the numeric value of an id associated with a name is very difficult, and in-
volves searching the file system for all appropriate files. You need to think carefully whether a
static or dynamic id is required, since changing your mind later will cause problems.

10.9.1 The use of dpkg-statoverride

This section is not intended as policy, but as a description of the use of dpkg-statoverride .

dpkg-statoverride is a replacement for the deprecated suidmanager package. Packages
which previously used suidmanager should have a Conflicts: suidmanager (« 0.50)
entry (or even (« 0.52)), and calls to suidregister and suidunregister should now be
simply removed from the maintainer scripts.

If a system administrator wishes to have a file (or directory or other such thing) installed with
owner and permissions different from those in the distributed Debian package, he can use the
dpkg-statoverride program to instruct dpkg to use the different settings every time the file is
installed. Thus the package maintainer should distribute the files with their normal permissions,
and leave it for the system administrator to make any desired changes. For example, a daemon
which is normally required to be setuid root, but in certain situations could be used without being
setuid, should be installed setuid in the .deb . Then the local system administrator can change this
if they wish. If there are two standard ways of doing it, the package maintainer can use debconf
to find out the preference, and call dpkg-statoverride in the maintainer script if necessary to
accommodate the system administrator’s choice.

Given the above, dpkg-statoverride is essentially a tool for system administrators and would
not normally be needed in the maintainer scripts. There is one type of situation, though, where
calls to dpkg-statoverride would be needed in the maintainer scripts, and that involves pack-
ages which use dynamically allocated user or group ids. In such a situation, something like the
following idiom can be very helpful in the package’s postinst , where sysuser is a dynamically
allocated id:

for i in /usr/bin/foo /usr/sbin/bar
do

if ! dpkg-statoverride --list $i >/dev/null
then

dpkg-statoverride --update --add sysuser root 4755 $i
fi

done

Chapter 10. Files 94

The corresponding dpkg-statoverride --remove calls can then be made unconditionally
when the package is purged.

95

Chapter 11

Customized programs

11.1 Architecture specification strings

If a program needs to specify an architecture specification string in some place, the following format
should be used: arch-os1.

Note that we don’t want to use arch -debian-linux to apply to the rule
architecture - vendor - os since this would make our programs incompatible with other
Linux distributions. We also don’t use something like arch -unknown-linux , since the
unknown does not look very good.

11.2 Daemons

The configuration files /etc/services , /etc/protocols , and /etc/rpc are managed by the
netbase package and must not be modified by other packages.

If a package requires a new entry in one of these files, the maintainer should get in contact with the
netbase maintainer, who will add the entries and release a new version of the netbase package.

The configuration file /etc/inetd.conf must not be modified by the package’s scripts except
via the update-inetd script or the DebianNet.pm Perl module. See their documentation for
details on how to add entries.

1The following architectures and operating systems are currently recognised by dpkg-architecture . The ar-
chitecture, arch , is one of the following: alpha , arm , hppa , i386 , ia64 , m68k, mips , mipsel , powerpc , s390 , sh ,
sheb , sparc and sparc64 . The operating system, os , is one of: linux , gnu , freebsd and openbsd . Use of gnu in
this string is reserved for the GNU/Hurd operating system.

Chapter 11. Customized programs 96

If a package wants to install an example entry into /etc/inetd.conf , the entry must be pre-
ceded with exactly one hash character (#). Such lines are treated as ”commented out by user“ by
the update-inetd script and are not changed or activated during package updates.

11.3 Using pseudo-ttys and modifying wtmp, utmp and lastlog

Some programs need to create pseudo-ttys. This should be done using Unix98 ptys if the C library
supports it. The resulting program must not be installed setuid root, unless that is required for
other functionality.

The files /var/run/utmp , /var/log/wtmp and /var/log/lastlog must be installed write-
able by group utmp . Programs which need to modify those files must be installed setgid utmp .

11.4 Editors and pagers

Some programs have the ability to launch an editor or pager program to edit or display a text
document. Since there are lots of different editors and pagers available in the Debian distribution,
the system administrator and each user should have the possibility to choose his/her preferred
editor and pager.

In addition, every program should choose a good default editor/pager if none is selected by the
user or system administrator.

Thus, every program that launches an editor or pager must use the EDITOR or PAGER environ-
ment variable to determine the editor or pager the user wishes to use. If these variables are not
set, the programs /usr/bin/editor and /usr/bin/pager should be used, respectively.

These two files are managed through the dpkg ”alternatives“ mechanism. Thus every package
providing an editor or pager must call the update-alternatives script to register these pro-
grams.

If it is very hard to adapt a program to make use of the EDITOR or PAGER variables, that program
may be configured to use /usr/bin/sensible-editor and /usr/bin/sensible-pager as
the editor or pager program respectively. These are two scripts provided in the Debian base system
that check the EDITOR and PAGER variables and launch the appropriate program, and fall back
to /usr/bin/editor and /usr/bin/pager if the variable is not set.

A program may also use the VISUAL environment variable to determine the user’s choice of
editor. If it exists, it should take precedence over EDITOR. This is in fact what /usr/bin
/sensible-editor does.

Chapter 11. Customized programs 97

It is not required for a package to depend on editor and pager , nor is it required for a package
to provide such virtual packages.2

11.5 Web servers and applications

This section describes the locations and URLs that should be used by all web servers and web
applications in the Debian system.

1 Cgi-bin executable files are installed in the directory

/usr/lib/cgi-bin/ cgi-bin-name

and should be referred to as

http://localhost/cgi-bin/ cgi-bin-name

2 Access to HTML documents

HTML documents for a package are stored in /usr/share/doc/ package and can be re-
ferred to as

http://localhost/doc/ package / filename

The web server should restrict access to the document tree so that only clients on the same
host can read the documents. If the web server does not support such access controls, then
it should not provide access at all, or ask about providing access during installation.

3 Web Document Root

Web Applications should try to avoid storing files in the Web Document Root. Instead they
should use the /usr/share/doc/package directory for documents and register the Web Ap-
plication via the menu package. If access to the web document root is unavoidable then
use

/var/www

as the Document Root. This might be just a symbolic link to the location where the system
administrator has put the real document root.

2The Debian base system already provides an editor and a pager program.

Chapter 11. Customized programs 98

11.6 Mail transport, delivery and user agents

Debian packages which process electronic mail, whether mail user agents (MUAs) or mail trans-
port agents (MTAs), must ensure that they are compatible with the configuration decisions below.
Failure to do this may result in lost mail, broken From: lines, and other serious brain damage!

The mail spool is /var/mail and the interface to send a mail message is /usr/sbin/sendmail
(as per the FHS). On older systems, the mail spool may be physically located in /var/spool
/mail , but all access to the mail spool should be via the /var/mail symlink. The mail spool is
part of the base system and not part of the MTA package.

All Debian MUAs, MTAs, MDAs and other mailbox accessing programs (such as IMAP daemons)
must lock the mailbox in an NFS-safe way. This means that fcntl() locking must be combined
with dot locking. To avoid deadlocks, a program should use fcntl() first and dot locking after
this, or alternatively implement the two locking methods in a non blocking way3. Using the func-
tions maillock and mailunlock provided by the liblockfile* 4 packages is the recommen-
ded way to realize this.

Mailboxes are generally mode 660 user .mail unless the system administrator has chosen other-
wise. A MUA may remove a mailbox (unless it has nonstandard permissions) in which case the
MTA or another MUA must recreate it if needed. Mailboxes must be writable by group mail.

The mail spool is 2775 root.mail , and MUAs should be setgid mail to do the locking mentioned
above (and must obviously avoid accessing other users’ mailboxes using this privilege).

/etc/aliases is the source file for the system mail aliases (e.g., postmaster, usenet, etc.), it is
the one which the sysadmin and postinst scripts may edit. After /etc/aliases is edited
the program or human editing it must call newaliases . All MTA packages must come with
a newaliases program, even if it does nothing, but older MTA packages did not do this so
programs should not fail if newaliases cannot be found. Note that because of this, all MTA
packages must have Provides , Conflicts and Replaces: mail-transport-agent con-
trol file fields.

The convention of writing forward to address in the mailbox itself is not supported. Use a
.forward file instead.

The rmail program used by UUCP for incoming mail should be /usr/sbin/rmail . Likewise,
rsmtp , for receiving batch-SMTP-over-UUCP, should be /usr/sbin/rsmtp if it is supported.

If your package needs to know what hostname to use on (for example) outgoing news and mail
messages which are generated locally, you should use the file /etc/mailname . It will contain the
portion after the username and @(at) sign for email addresses of users on the machine (followed
by a newline).

3If it is not possible to establish both locks, the system shouldn’t wait for the second lock to be established, but
remove the first lock, wait a (random) time, and start over locking again.

4You will need to depend on liblockfile1 (>>1.01) to use these functions.

Chapter 11. Customized programs 99

Such package should check for the existence of this file when it is being configured. If it exists, it
should be used without comment, although an MTA’s configuration script may wish to prompt
the user even if it finds that this file exists. If the file does not exist, the package should prompt the
user for the value (preferably using debconf) and store it in /etc/mailname as well as using
it in the package’s configuration. The prompt should make it clear that the name will not just be
used by that package. For example, in this situation the inn package could say something like:

Please enter the "mail name" of your system. This is the
hostname portion of the address to be shown on outgoing
news and mail messages. The default is
syshostname , your system’s host name. Mail
name [" syshostname "]:

where syshostname is the output of hostname --fqdn .

11.7 News system configuration

All the configuration files related to the NNTP (news) servers and clients should be located under
/etc/news .

There are some configuration issues that apply to a number of news clients and server packages
on the machine. These are:

/etc/news/organization A string which should appear as the organization header for all
messages posted by NNTP clients on the machine

/etc/news/server Contains the FQDN of the upstream NNTP server, or localhost if the local
machine is an NNTP server.

Other global files may be added as required for cross-package news configuration.

11.8 Programs for the X Window System

11.8.1 Providing X support and package priorities

Programs that can be configured with support for the X Window System must be configured to do
so and must declare any package dependencies necessary to satisfy their runtime requirements
when using the X Window System. If such a package is of higher priority than the X packages
on which it depends, it is required that either the X-specific components be split into a separate
package, or that an alternative version of the package, which includes X support, be provided, or
that the package’s priority be lowered.

Chapter 11. Customized programs 100

11.8.2 Packages providing an X server

Packages that provide an X server that, directly or indirectly, communicates with real input
and display hardware should declare in their control data that they provide the virtual package
xserver .5

11.8.3 Packages providing a terminal emulator

Packages that provide a terminal emulator for the X Window System which meet the cri-
teria listed below should declare in their control data that they provide the virtual package
x-terminal-emulator . They should also register themselves as an alternative for /usr/bin
/x-terminal-emulator , with a priority of 20.

To be an x-terminal-emulator , a program must:
• Be able to emulate a DEC VT100 terminal, or a compatible terminal.
• Support the command-line option -e command, which creates a new terminal window6

and runs the specified command, interpreting the entirity of the rest of the command line as
a command to pass straight to exec, in the manner that xterm does.

• Support the command-line option -T title , which creates a new terminal window with
the window title title.

11.8.4 Packages providing a window manager

Packages that provide a window manager should declare in their control data that they provide
the virtual package x-window-manager . They should also register themselves as an alternative
for /usr/bin/x-window-manager , with a priority calculated as follows:

• Start with a priority of 20.
• If the window manager supports the Debian menu system, add 20 points if this support

is available in the package’s default configuration (i.e., no configuration files belonging to
the system or user have to be edited to activate the feature); if configuration files must be
modified, add only 10 points.

• If the window manager complies with The Window Manager Specification Project (http:
//www.freedesktop.org/Standards/wm-spec), written by the Free Desktop Group
(http://www.freedesktop.org/), add 40 points.

5This implements current practice, and provides an actual policy for usage of the xserver virtual package which
appears in the virtual packages list. In a nutshell, X servers that interface directly with the display and input hardware
or via another subsystem (e.g., GGI) should provide xserver . Things like Xvfb , Xnest , and Xprt should not.

6”New terminal window“ does not necessarily mean a new top-level X window directly parented by the window
manager; it could, if the terminal emulator application were so coded, be a new ”view“ in a multiple-document interface
(MDI).

http://www.freedesktop.org/Standards/wm-spec
http://www.freedesktop.org/Standards/wm-spec
http://www.freedesktop.org/

Chapter 11. Customized programs 101

• If the window manager permits the X session to be restarted using a different window man-
ager (without killing the X server) in its default configuration, add 10 points; otherwise add
none.

11.8.5 Packages providing fonts

Packages that provide fonts for the X Window System7 must do a number of things to ensure that
they are both available without modification of the X or font server configuration, and that they
do not corrupt files used by other font packages to register information about themselves.

1 Fonts of any type supported by the X Window System must be in a separate binary package
from any executables, libraries, or documentation (except that specific to the fonts shipped,
such as their license information). If one or more of the fonts so packaged are necessary for
proper operation of the package with which they are associated the font package may be
Recommended; if the fonts merely provide an enhancement, a Suggests relationship may be
used. Packages must not Depend on font packages.8

5 BDF fonts must be converted to PCF fonts with the bdftopcf utility (available in the
xutils package, gzip ped, and placed in a directory that corresponds to their resolution:

• 100 dpi fonts must be placed in /usr/X11R6/lib/X11/fonts/100dpi/ .
• 75 dpi fonts must be placed in /usr/X11R6/lib/X11/fonts/75dpi/ .
• Character-cell fonts, cursor fonts, and other low-resolution fonts must be placed in

/usr/X11R6/lib/X11/fonts/misc/ .

6 Speedo fonts must be placed in /usr/X11R6/lib/X11/fonts/Speedo/ .

7 Type 1 fonts must be placed in /usr/X11R6/lib/X11/fonts/Type1/ . If font metric files
are available, they must be placed here as well.

8 Subdirectories of /usr/X11R6/lib/X11/fonts/ other than those listed above must be
neither created nor used. (The PEX, CID , and cyrillic directories are excepted for histor-
ical reasons, but installation of files into these directories remains discouraged.)

9 Font packages may, instead of placing files directly in the X font directories listed above,
provide symbolic links in that font directory pointing to the files’ actual location in the
filesystem. Such a location must comply with the FHS.

7For the purposes of Debian Policy, a ”font for the X Window System“ is one which is accessed via X protocol
requests. Fonts for the Linux console, for PostScript renderers, or any other purpose, do not fit this definition. Any tool
which makes such fonts available to the X Window System, however, must abide by this font policy.

8This is because the X server may retrieve fonts from the local filesystem or over the network from an X font server;
the Debian package system is empowered to deal only with the local filesystem.

Chapter 11. Customized programs 102

10 Font packages should not contain both 75dpi and 100dpi versions of a font. If both are
available, they should be provided in separate binary packages with -75dpi or -100dpi
appended to the names of the packages containing the corresponding fonts.

11 Fonts destined for the misc subdirectory should not be included in the same package as
75dpi or 100dpi fonts; instead, they should be provided in a separate package with -misc
appended to its name.

14 Font packages must not provide the files fonts.dir , fonts.alias , or fonts.scale in
a font directory:

• fonts.dir files must not be provided at all.

• fonts.alias and fonts.scale files, if needed, should be provided in the directory
/etc/X11/fonts/ fontdir / package . extension , where fontdir is the name of the
subdirectory of /usr/X11R6/lib/X11/fonts/ where the package’s corresponding
fonts are stored (e.g., 75dpi or misc), package is the name of the package that provides
these fonts, and extension is either scale or alias , whichever corresponds to the file
contents.

15 Font packages must declare a dependency on xutils (>> 4.0.3) in their control data.

16 Font packages that provide one or more fonts.scale files as described above must invoke
update-fonts-scale on each directory into which they installed fonts before invoking
update-fonts-dir on that directory. This invocation must occur in both the postinst
(for all arguments) and postrm (for all arguments except upgrade) scripts.

17 Font packages that provide one or more fonts.alias files as described above must invoke
update-fonts-alias on each directory into which they installed fonts. This invocation
must occur in both the postinst (for all arguments) and postrm (for all arguments except
upgrade) scripts.

18 Font packages must invoke update-fonts-dir on each directory into which they installed
fonts. This invocation must occur in both the postinst (for all arguments) and postrm (for
all arguments except upgrade) scripts.

19 Font packages must not provide alias names for the fonts they include which collide with
alias names already in use by fonts already packaged.

20 Font packages must not provide fonts with the same XLFD registry name as another font
already packaged.

Chapter 11. Customized programs 103

11.8.6 Application defaults files

Application defaults files must be installed in the directory /etc/X11/app-defaults/ (use of a
localized subdirectory of /etc/X11/ as described in the X Toolkit Intrinsics - C Language Interface
manual is also permitted). They must be registered as conffile s or handled as configuration
files. Packages must not provide the directory /usr/X11R6/lib/X11/app-defaults/ .

Customization of programs’ X resources may also be supported with the provision of a file with
the same name as that of the package placed in the /etc/X11/Xresources/ directory, which
must registered as a conffile or handled as a configuration file.9 Important: packages that install
files into the /etc/X11/Xresources/ directory must conflict with xbase (<< 3.3.2.3a-2) ;
if this is not done it is possible for the installing package to destroy a previously-existing /etc
/X11/Xresources file which had been customized by the system administrator.

11.8.7 Installation directory issues

Packages using the X Window System should not be configured to install files under the /usr
/X11R6/ directory unless they use imake . The /usr/X11R6/ directory hierarchy should be
regarded as deprecated for all packages except the X Window System itself, and those which use
the imake program it provides, in which case the packages may transition out of the /usr/X11R6
/ directory at the maintainer’s discretion.10

Programs that use GNU autoconf and automake are usually easily configured at compile time
to use /usr/ instead of /usr/X11R6/ , and this should be done whenever possible. Config-
uration files for window managers and display managers should be placed in a subdirectory of
/etc/X11/ corresponding to the package name due to these programs’ tight integration with the
mechanisms of the X Window System. Application-level programs should use the /etc/ direct-
ory unless otherwise mandated by policy.

The installation of files into subdirectories of /usr/X11R6/include/X11/ and /usr/X11R6
/lib/X11/ is permitted but discouraged; package maintainers should determine if subdirector-
ies of /usr/lib/ and /usr/share/ can be used instead. (The use of symbolic links from the
X11R6 directories to other FHS-compliant locations is encouraged if the program is not easily
configured to look elsewhere for its files.)

Packages must not provide or install files into the directories /usr/bin/X11/ , /usr/include
/X11/ or /usr/lib/X11/ . Files within a package should, however, make reference to these
directories, rather than their X11R6-named counterparts /usr/X11R6/bin/ , /usr/X11R6

9Note that this mechanism is not the same as using app-defaults; app-defaults are tied to the client binary on the
local filesystem, whereas X resources are stored in the X server and affect all connecting clients.

10Imake -using programs are exempt because, as long as they are written correctly, the pathnames they use to locate
resources and install themselves are derived wholly from the X Window System configuration. Thus, in the event that
the X Window System moves to /usr/X11R7/ , /usr/X12/ , or just plain /usr/ , all that is required for these programs
is a recompile against the corresponding X Window System library development packages.

Chapter 11. Customized programs 104

/include/X11/ and /usr/X11R6/lib/X11/ , if the resources being referred to have not been
moved to other FHS-compliant locations.

11.8.8 The OSF/Motif and OpenMotif libraries

Programs that require the non-DFSG-compliant OSF/Motif or OpenMotif libraries11 should be compiled
against and tested with LessTif (a free re-implementation of Motif) instead. If the maintainer
judges that the program or programs do not work sufficiently well with LessTif to be distributed
and supported, but do so when compiled against Motif, then two versions of the package should
be created; one linked statically against Motif and with -smotif appended to the package name,
and one linked dynamically against Motif and with -dmotif appended to the package name.

Both Motif-linked versions are dependent upon non-DFSG-compliant software and thus cannot
be uploaded to the main distribution; if the software is itself DFSG-compliant it may be uploaded
to the contrib distribution. While known existing versions of Motif permit unlimited redistribution
of binaries linked against the library (whether statically or dynamically), it is the package main-
tainer’s responsibility to determine whether this is permitted by the license of the copy of Motif
in his or her possession.

11.9 Perl programs and modules

Perl programs and modules should follow the current Perl policy.

The Perl policy can be found in the perl-policy files in the debian-policy package. It
is also available from the Debian web mirrors at /doc/packaging-manuals/perl-policy/
(http://www.debian.org/doc/packaging-manuals/perl-policy/) .

11.10 Emacs lisp programs

Please refer to the ”Debian Emacs Policy“ for details of how to package emacs lisp programs.

The Emacs policy is available in debian-emacs-policy.gz of the
emacsen-common package. It is also available from the Debian web mirrors at
/doc/packaging-manuals/debian-emacs-policy (http://www.debian.org/doc/
packaging-manuals/debian-emacs-policy) .

11OSF/Motif and OpenMotif are collectively referred to as ”Motif“ in this policy document.

http://www.debian.org/doc/packaging-manuals/perl-policy/
http://www.debian.org/doc/packaging-manuals/debian-emacs-policy
http://www.debian.org/doc/packaging-manuals/debian-emacs-policy

Chapter 11. Customized programs 105

11.11 Games

The permissions on /var/games are mode 755, owner root and group root .

Each game decides on its own security policy.

Games which require protected, privileged access to high-score files, savegames, etc., may be
made set-group-id (mode 2755) and owned by root.games , and use files and directories with
appropriate permissions (770 root.games , for example). They must not be made set-user-id, as
this causes security problems. (If an attacker can subvert any set-user-id game they can overwrite
the executable of any other, causing other players of these games to run a Trojan horse program.
With a set-group-id game the attacker only gets access to less important game data, and if they
can get at the other players’ accounts at all it will take considerably more effort.)

Some packages, for example some fortune cookie programs, are configured by the upstream au-
thors to install with their data files or other static information made unreadable so that they can
only be accessed through set-id programs provided. You should not do this in a Debian package:
anyone can download the .deb file and read the data from it, so there is no point making the files
unreadable. Not making the files unreadable also means that you don’t have to make so many
programs set-id, which reduces the risk of a security hole.

As described in the FHS, binaries of games should be installed in the directory /usr/games . This
also applies to games that use the X Window System. Manual pages for games (X and non-X
games) should be installed in /usr/share/man/man6 .

Chapter 11. Customized programs 106

107

Chapter 12

Documentation

12.1 Manual pages

You should install manual pages in nroff source form, in appropriate places under /usr/share
/man . You should only use sections 1 to 9 (see the FHS for more details). You must not install a
preformatted ”cat page“.

Each program, utility, and function should have an associated manual page included in the same
package. It is suggested that all configuration files also have a manual page included as well.
Manual pages for protocols and other auxiliary things are optional.

If no manual page is available, this is considered as a bug and should be reported to the Debian
Bug Tracking System (the maintainer of the package is allowed to write this bug report themselves,
if they so desire). Do not close the bug report until a proper man page is available.1

You may forward a complaint about a missing man page to the upstream authors, and mark the
bug as forwarded in the Debian bug tracking system. Even though the GNU Project do not in
general consider the lack of a man page to be a bug, we do; if they tell you that they don’t consider
it a bug you should leave the bug in our bug tracking system open anyway.

Manual pages should be installed compressed using gzip -9 .

If one man page needs to be accessible via several names it is better to use a symbolic link than
the .so feature, but there is no need to fiddle with the relevant parts of the upstream source to
change from .so to symlinks: don’t do it unless it’s easy. You should not create hard links in the
manual page directories, nor put absolute filenames in .so directives. The filename in a .so in a
man page should be relative to the base of the man page tree (usually /usr/share/man). If you

1It is not very hard to write a man page. See the Man-Page-HOWTO (http://www.schweikhardt.net/man_
page_howto.html), man(7) , the examples created by debmake or dh_make , the helper programs help2man , or the
directory /usr/share/doc/man-db/examples .

http://www.schweikhardt.net/man_page_howto.html
http://www.schweikhardt.net/man_page_howto.html

Chapter 12. Documentation 108

do not create any links (whether symlinks, hard links, or .so directives) in the filesystem to the
alternate names of the man page, then you should not rely on manfinding your man page under
those names based solely on the information in the man page’s header.2

12.2 Info documents

Info documents should be installed in /usr/share/info . They should be compressed with
gzip -9 .

Your package should call install-info to update the Info dir file in its postinst script when
called with a configure argument, for example:

install-info --quiet --section Development Development \
/usr/share/info/foobar.info

It is a good idea to specify a section for the location of your program; this is done with the
--section switch. To determine which section to use, you should look at /usr/share/info
/dir on your system and choose the most relevant (or create a new section if none of the current
sections are relevant). Note that the --section flag takes two arguments; the first is a regular ex-
pression to match (case-insensitively) against an existing section, the second is used when creating
a new one.

You should remove the entries in the prerm script when called with a remove argument:

install-info --quiet --remove /usr/share/info/foobar.info

If install-info cannot find a description entry in the Info file you must supply one. See
install-info(8) for details.

12.3 Additional documentation

Any additional documentation that comes with the package may be installed at the discretion of
the package maintainer. Text documentation should be installed in the directory /usr/share
/doc/ package , where package is the name of the package, and compressed with gzip -9 unless
it is small.

If a package comes with large amounts of documentation which many users of the package will
not require you should create a separate binary package to contain it, so that it does not take up
disk space on the machines of users who do not need or want it installed.

2Supporting this in man often requires unreasonable processing time to find a manual page or to report that none
exists, and moves knowledge into man’s database that would be better left in the filesystem. This support is therefore
deprecated and will cease to be present in the future.

Chapter 12. Documentation 109

It is often a good idea to put text information files (READMEs, changelogs, and so forth) that come
with the source package in /usr/share/doc/ package in the binary package. However, you
don’t need to install the instructions for building and installing the package, of course!

Packages must not require the existence of any files in /usr/share/doc/ in order to function
3. Any files that are referenced by programs but are also useful as standalone documentation
should be installed under /usr/share/ package / with symbolic links from /usr/share/doc
/ package .

/usr/share/doc/ package may be a symbolic link to another directory in /usr/share/doc
only if the two packages both come from the same source and the first package Depends on the
second.

Former Debian releases placed all additional documentation in /usr/doc/ package . This has
been changed to /usr/share/doc/ package , and packages must not put documentation in the
directory /usr/doc/ package . 4

12.4 Preferred documentation formats

The unification of Debian documentation is being carried out via HTML.

If your package comes with extensive documentation in a markup format that can be converted
to various other formats you should if possible ship HTML versions in a binary package, in the
directory /usr/share/doc/ appropriate-package or its subdirectories.5

Other formats such as PostScript may be provided at the package maintainer’s discretion.

12.5 Copyright information

Every package must be accompanied by a verbatim copy of its copyright and distribution license
in the file /usr/share/doc/ package /copyright . This file must neither be compressed nor
be a symbolic link.

In addition, the copyright file must say where the upstream sources (if any) were obtained. It
should name the original authors of the package and the Debian maintainer(s) who were involved
with its creation.

3The system administrator should be able to delete files in /usr/share/doc/ without causing any programs to
break.

4At this phase of the transition, we no longer require a symbolic link in /usr/doc/ . At a later point, policy shall
change to make the symbolic links a bug.

5The rationale: The important thing here is that HTML docs should be available in some package, not necessarily in
the main binary package.

Chapter 12. Documentation 110

A copy of the file which will be installed in /usr/share/doc/ package /copyright should be
in debian/copyright in the source package.

/usr/share/doc/ package may be a symbolic link to another directory in /usr/share/doc
only if the two packages both come from the same source and the first package Depends on the
second. These rules are important because copyrights must be extractable by mechanical means.

Packages distributed under the UCB BSD license, the Artistic license, the GNU GPL, and
the GNU LGPL should refer to the files /usr/share/common-licenses/BSD , /usr/share
/common-licenses/Artistic , /usr/share/common-licenses/GPL , and /usr/share
/common-licenses/LGPL respectively, rather than quoting them in the copyright file.

You should not use the copyright file as a general READMEfile. If your package has such a file it
should be installed in /usr/share/doc/ package /READMEor README.Debian or some other
appropriate place.

12.6 Examples

Any examples (configurations, source files, whatever), should be installed in a directory
/usr/share/doc/ package /examples . These files should not be referenced by any pro-
gram: they’re there for the benefit of the system administrator and users as documentation
only. Architecture-specific example files should be installed in a directory /usr/lib/ package
/examples with symbolic links to them from /usr/share/doc/ package /examples , or the
latter directory itself may be a symbolic link to the former.

If the purpose of a package is to provide examples, then the example files may be installed into
/usr/share/doc/ package .

12.7 Changelog files

Packages that are not Debian-native must contain a compressed copy of the debian
/changelog file from the Debian source tree in /usr/share/doc/ package with the name
changelog.Debian.gz .

If an upstream changelog is available, it should be accessible as /usr/share/doc/ package
/changelog.gz in plain text. If the upstream changelog is distributed in HTML, it should be
made available in that form as /usr/share/doc/ package /changelog.html.gz and a plain
text changelog.gz should be generated from it using, for example, lynx -dump -nolist . If
the upstream changelog files do not already conform to this naming convention, then this may be
achieved either by renaming the files, or by adding a symbolic link, at the maintainer’s discretion.6

6Rationale: People should not have to look in places for upstream changelogs merely because they are given differ-
ent names or are distributed in HTML format.

Chapter 12. Documentation 111

All of these files should be installed compressed using gzip -9 , as they will become large with
time even if they start out small.

If the package has only one changelog which is used both as the Debian changelog and the
upstream one because there is no separate upstream maintainer then that changelog should
usually be installed as /usr/share/doc/ package /changelog.gz ; if there is a separate up-
stream maintainer, but no upstream changelog, then the Debian changelog should still be called
changelog.Debian.gz .

For details about the format and contents of the Debian changelog file, please see ‘Debian
changelog: debian/changelog ’ on page 21.

Chapter 12. Documentation 112

113

Appendix A

Introduction and scope of these
appendices

These appendices are taken essentially verbatim from the now-deprecated Packaging Manual, ver-
sion 3.2.1.0. They are the chapters which are likely to be of use to package maintainers and which
have not already been included in the policy document itself. Most of these sections are very likely
not relevant to policy; they should be treated as documentation for the packaging system. Please
note that these appendices are included for convenience, and for historical reasons: they used to
be part of policy package, and they have not yet been incorporated into dpkg documentation.
However, they still have value, and hence they are presented here.

They have not yet been checked to ensure that they are compatible with the contents of policy,
and if there are any contradictions, the version in the main policy document takes precedence.
The remaining chapters of the old Packaging Manual have also not been read in detail to ensure
that there are not parts which have been left out. Both of these will be done in due course.

Certain parts of the Packaging manual were integrated into the Policy Manual proper, and re-
moved from the appendices. Links have been placed from the old locations to the new ones.

dpkg is a suite of programs for creating binary package files and installing and removing them on
Unix systems.1

The binary packages are designed for the management of installed executable programs (usually
compiled binaries) and their associated data, though source code examples and documentation
are provided as part of some packages.

This manual describes the technical aspects of creating Debian binary packages (.deb files). It
documents the behaviour of the package management programs dpkg , dselect et al. and the
way they interact with packages.

1dpkg is targetted primarily at Debian GNU/Linux, but may work on or be ported to other systems.

Chapter A. Introduction and scope of these appendices 114

It also documents the interaction between dselect ’s core and the access method scripts it uses
to actually install the selected packages, and describes how to create a new access method.

This manual does not go into detail about the options and usage of the package building and
installation tools. It should therefore be read in conjuction with those programs’ man pages.

The utility programs which are provided with dpkg for managing various system configuration
and similar issues, such as update-rc.d and install-info , are not described in detail here -
please see their man pages.

It is assumed that the reader is reasonably familiar with the dpkg System Administrators’ manual.
Unfortunately this manual does not yet exist.

The Debian version of the FSF’s GNU hello program is provided as an example for people wishing
to create Debian packages. The Debian debmake package is recommended as a very helpful tool
in creating and maintaining Debian packages. However, while the tools and examples are helpful,
they do not replace the need to read and follow the Policy and Programmer’s Manual.

115

Appendix B

Binary packages (from old Packaging
Manual)

The binary package has two main sections. The first part consists of various control information
files and scripts used by dpkg when installing and removing. See ‘Package control information
files’ on the following page.

The second part is an archive containing the files and directories to be installed.

In the future binary packages may also contain other components, such as checksums and digital
signatures. The format for the archive is described in full in the deb(5) man page.

B.1 Creating package files - dpkg-deb

All manipulation of binary package files is done by dpkg-deb ; it’s the only program that has
knowledge of the format. (dpkg-deb may be invoked by calling dpkg , as dpkg will spot that
the options requested are appropriate to dpkg-deb and invoke that instead with the same argu-
ments.)

In order to create a binary package you must make a directory tree which contains all the files and
directories you want to have in the filesystem data part of the package. In Debian-format source
packages this directory is usually debian/tmp , relative to the top of the package’s source tree.

They should have the locations (relative to the root of the directory tree you’re constructing) own-
erships and permissions which you want them to have on the system when they are installed.

With current versions of dpkg the uid/username and gid/groupname mappings for the users and
groups being used should be the same on the system where the package is built and the one where
it is installed.

Chapter B. Binary packages (from old Packaging Manual) 116

You need to add one special directory to the root of the miniature filesystem tree you’re creating:
DEBIAN. It should contain the control information files, notably the binary package control file
(see ‘The main control information file: control ’ on the next page).

The DEBIAN directory will not appear in the filesystem archive of the package, and so won’t be
installed by dpkg when the package is installed.

When you’ve prepared the package, you should invoke:

dpkg --build directory

This will build the package in directory .deb . (dpkg knows that --build is a dpkg-deb
option, so it invokes dpkg-deb with the same arguments to build the package.)

See the man page dpkg-deb(8) for details of how to examine the contents of this newly-created
file. You may find the output of following commands enlightening:

dpkg-deb --info filename .deb
dpkg-deb --contents filename .deb
dpkg --contents filename .deb

To view the copyright file for a package you could use this command:

dpkg --fsys-tarfile filename .deb | tar xO ./usr/share/doc/*/copyright | pager

B.2 Package control information files

The control information portion of a binary package is a collection of files with names known to
dpkg . It will treat the contents of these files specially - some of them contain information used by
dpkg when installing or removing the package; others are scripts which the package maintainer
wants dpkg to run.

It is possible to put other files in the package control area, but this is not generally a good idea
(though they will largely be ignored).

Here is a brief list of the control info files supported by dpkg and a summary of what they’re used
for.

control This is the key description file used by dpkg . It specifies the package’s name and ver-
sion, gives its description for the user, states its relationships with other packages, and so
forth. See ‘Source package control files – debian/control ’ on page 30 and ‘Binary pack-
age control files – DEBIAN/control ’ on page 31.

Chapter B. Binary packages (from old Packaging Manual) 117

It is usually generated automatically from information in the source package by the
dpkg-gencontrol program, and with assistance from dpkg-shlibdeps . See ‘Tools for
processing source packages’ on page 119.

postinst , preinst , postrm , prerm These are exectuable files (usually scripts) which dpkg
runs during installation, upgrade and removal of packages. They allow the package to deal
with matters which are particular to that package or require more complicated processing
than that provided by dpkg . Details of when and how they are called are in ‘Package main-
tainer scripts and installation procedure’ on page 43.

It is very important to make these scripts idempotent. See ‘Maintainer scripts Idempotency’
on page 44.

The maintainer scripts are guaranteed to run with a controlling terminal and can interact
with the user. See ‘Controlling terminal for maintainer scripts’ on page 44.

conffiles This file contains a list of configuration files which are to be handled automatically
by dpkg (see ‘Configuration file handling (from old Packaging Manual)’ on page 131). Note
that not necessarily every configuration file should be listed here.

shlibs This file contains a list of the shared libraries supplied by the package, with dependency
details for each. This is used by dpkg-shlibdeps when it determines what dependencies
are required in a package control file. The shlibs file format is described on ‘The shlibs
File Format’ on page 64.

B.3 The main control information file: control

The most important control information file used by dpkg when it installs a package is control .
It contains all the package’s ”vital statistics“.

The binary package control files of packages built from Debian sources are made by a special
tool, dpkg-gencontrol , which reads debian/control and debian/changelog to find the
information it needs. See ‘Source packages (from old Packaging Manual)’ on page 119 for more
details.

The fields in binary package control files are listed in ‘Binary package control files – DEBIAN
/control ’ on page 31.

A description of the syntax of control files and the purpose of the fields is available in ‘Control
files and their fields’ on page 29.

B.4 Time Stamps

See ‘Time Stamps’ on page 23.

Chapter B. Binary packages (from old Packaging Manual) 118

119

Appendix C

Source packages (from old Packaging
Manual)

The Debian binary packages in the distribution are generated from Debian sources, which are in
a special format to assist the easy and automatic building of binaries.

C.1 Tools for processing source packages

Various tools are provided for manipulating source packages; they pack and unpack sources and
help build of binary packages and help manage the distribution of new versions.

They are introduced and typical uses described here; see dpkg-source(1) for full documenta-
tion about their arguments and operation.

For examples of how to construct a Debian source package, and how to use those utilities that are
used by Debian source packages, please see the hello example package.

C.1.1 dpkg-source - packs and unpacks Debian source packages

This program is frequently used by hand, and is also called from package-independent automated
building scripts such as dpkg-buildpackage .

To unpack a package it is typically invoked with

dpkg-source -x .../path/to/filename .dsc

Chapter C. Source packages (from old Packaging Manual) 120

with the filename .tar.gz and filename .diff.gz (if applicable) in the same directory. It
unpacks into package - version , and if applicable package - version .orig , in the current
directory.

To create a packed source archive it is typically invoked:

dpkg-source -b package - version

This will create the .dsc , .tar.gz and .diff.gz (if appropriate) in the current directory.
dpkg-source does not clean the source tree first - this must be done separately if it is required.

See also ‘Source packages as archives’ on page 126.

C.1.2 dpkg-buildpackage - overall package-building control script

dpkg-buildpackage is a script which invokes dpkg-source , the debian/rules targets
clean , build and binary , dpkg-genchanges and gpg (or pgp) to build a signed source and
binary package upload.

It is usually invoked by hand from the top level of the built or unbuilt source directory. It may be
invoked with no arguments; useful arguments include:
-uc , -us Do not sign the .changes file or the source package .dsc file, respectively.
-p sign-command Invoke sign-command instead of finding gpg or pgp on the PATH. sign-

command must behave just like gpg or pgp .
-r root-command When root privilege is required, invoke the command root-command. root-

command should invoke its first argument as a command, from the PATHif necessary, and
pass its second and subsequent arguments to the command it calls. If no root-command is
supplied then dpkg-buildpackage will take no special action to gain root privilege, so that for
most packages it will have to be invoked as root to start with.

-b , -B Two types of binary-only build and upload - see dpkg-source(1) .

C.1.3 dpkg-gencontrol - generates binary package control files

This program is usually called from debian/rules (see ‘The Debianised source tree’ on
page 123) in the top level of the source tree.

This is usually done just before the files and directories in the temporary directory tree where the
package is being built have their permissions and ownerships set and the package is constructed
using dpkg-deb/ 1.

1This is so that the control file which is produced has the right permissions

Chapter C. Source packages (from old Packaging Manual) 121

dpkg-gencontrol must be called after all the files which are to go into the package have been
placed in the temporary build directory, so that its calculation of the installed size of a package is
correct.

It is also necessary for dpkg-gencontrol to be run after dpkg-shlibdeps so that the variable
substitutions created by dpkg-shlibdeps in debian/substvars are available.

For a package which generates only one binary package, and which builds it in debian/tmp
relative to the top of the source package, it is usually sufficient to call dpkg-gencontrol .

Sources which build several binaries will typically need something like:

dpkg-gencontrol -Pdebian/tmp- pkg -p package

The -P tells dpkg-gencontrol that the package is being built in a non-default directory, and the
-p tells it which package’s control file should be generated.

dpkg-gencontrol also adds information to the list of files in debian/files , for the benefit of
(for example) a future invocation of dpkg-genchanges .

C.1.4 dpkg-shlibdeps - calculates shared library dependencies

This program is usually called from debian/rules just before dpkg-gencontrol (see ‘The
Debianised source tree’ on page 123), in the top level of the source tree.

Its arguments are executables. 2 for which shared library dependencies should be included in the
binary package’s control file.

If some of the found shared libraries should only warrant a Recommendsor Suggests , or if some
warrant a Pre-Depends , this can be achieved by using the -d dependency-field option before
those executable(s). (Each -d option takes effect until the next -d .)

dpkg-shlibdeps does not directly cause the output control file to be modified. Instead by
default it adds to the debian/substvars file variable settings like shlibs:Depends . These
variable settings must be referenced in dependency fields in the appropriate per-binary-package
sections of the source control file.

For example, a package that generates an essential part which requires dependencies, and optional
parts that which only require a recommendation, would separate those two sets of dependencies
into two different fields.3 It can say in its debian/rules :

2In a forthcoming dpkg version, dpkg-shlibdeps would be required to be called on shared libraries as well. They
may be specified either in the locations in the source tree where they are created or in the locations in the temporary
build tree where they are installed prior to binary package creation.

3At the time of writing, an example for this was the xmmspackage, with Depends used for the xmms executable,
Recommends for the plug-ins and Suggests for even more optional features provided by unzip.

Chapter C. Source packages (from old Packaging Manual) 122

dpkg-shlibdeps -dDepends program anotherprogram ... \
-dRecommends optionalpart anotheroptionalpart

and then in its main control file debian/control :

...
Depends: ${shlibs:Pre-Depends}
Recommends: ${shlibs:Recommends}
...

Sources which produce several binary packages with different shared library dependency require-
ments can use the -p varnameprefix option to override the default shlibs: prefix (one in-
vocation of dpkg-shlibdeps per setting of this option). They can thus produce several sets
of dependency variables, each of the form varnameprefix : dependencyfield , which can be
referred to in the appropriate parts of the binary package control files.

C.1.5 dpkg-distaddfile - adds a file to debian/files

Some packages’ uploads need to include files other than the source and binary package files.

dpkg-distaddfile adds a file to the debian/files file so that it will be included in the
.changes file when dpkg-genchanges is run.

It is usually invoked from the binary target of debian/rules :

dpkg-distaddfile filename section priority

The filename is relative to the directory where dpkg-genchanges will expect to find it - this is
usually the directory above the top level of the source tree. The debian/rules target should put
the file there just before or just after calling dpkg-distaddfile .

The section and priority are passed unchanged into the resulting .changes file.

C.1.6 dpkg-genchanges - generates a .changes upload control file

This program is usually called by package-independent automatic building scripts such as
dpkg-buildpackage , but it may also be called by hand.

It is usually called in the top level of a built source tree, and when invoked with no arguments
will print out a straightforward .changes file based on the information in the source package’s
changelog and control file and the binary and source packages which should have been built.

Chapter C. Source packages (from old Packaging Manual) 123

C.1.7 dpkg-parsechangelog - produces parsed representation of a changelog

This program is used internally by dpkg-source et al. It may also occasionally be useful in
debian/rules and elsewhere. It parses a changelog, debian/changelog by default, and
prints a control-file format representation of the information in it to standard output.

C.1.8 dpkg-architecture - information about the build and host system

This program can be used manually, but is also invoked by dpkg-buildpackage or debian
/rules to set to set environment or make variables which specify the build and host architecture
for the package building process.

C.2 The Debianised source tree

The source archive scheme described later is intended to allow a Debianised source tree with
some associated control information to be reproduced and transported easily. The Debianised
source tree is a version of the original program with certain files added for the benefit of the
Debianisation process, and with any other changes required made to the rest of the source code
and installation scripts.

The extra files created for Debian are in the subdirectory debian of the top level of the Debianised
source tree. They are described below.

C.2.1 debian/rules - the main building script

See ‘Main building script: debian/rules ’ on page 23.

C.2.2 debian/changelog

See ‘Debian changelog: debian/changelog ’ on page 21.

It is recommended that the entire changelog be encoded in the UTF-8 (http://www.
cis.ohio-state.edu/cgi-bin/rfc/rfc2279.html) encoding of Unicode (http://www.
unicode.org/).4

4Support for Unicode, and specifically UTF-8, is steadily increasing among popular applications in Debian. For
example, in unstable, GNOME 2 has excellent support (almost level 2) in almost all its applications; the big remaining
one is gnome-terminal, of which one requires development versions in order to support UTF-8 (available in Debian
experimental now if you want to play). I think that by the time sarge is released, UTF-8 support will start to hit critical
mass. I think it is fairly obvious that we need to eventually transition to UTF-8 for our package infrastructure; it is really

http://www.cis.ohio-state.edu/cgi-bin/rfc/rfc2279.html
http://www.cis.ohio-state.edu/cgi-bin/rfc/rfc2279.html
http://www.unicode.org/
http://www.unicode.org/

Chapter C. Source packages (from old Packaging Manual) 124

Defining alternative changelog formats

It is possible to use a different format to the standard one, by providing a parser for the format
you wish to use.

In order to have dpkg-parsechangelog run your parser, you must include a
line within the last 40 lines of your file matching the Perl regular expression:
\schangelog-format:\s+([0-9a-z]+)\W The part in parentheses should be the name
of the format. For example, you might say:

@@@ changelog-format: joebloggs @@@

Changelog format names are non-empty strings of alphanumerics.

If such a line exists then dpkg-parsechangelog will look for the parser as /usr/lib
/dpkg/parsechangelog/ format-name or /usr/local/lib/dpkg/parsechangelog
/ format-name ; it is an error for it not to find it, or for it not to be an executable program. The
default changelog format is dpkg , and a parser for it is provided with the dpkg package.

The parser will be invoked with the changelog open on standard input at the start of the file. It
should read the file (it may seek if it wishes) to determine the information required and return
the parsed information to standard output in the form of a series of control fields in the stand-
ard format. By default it should return information about only the most recent version in the
changelog; it should accept a -v version option to return changes information from all versions
present strictly after version, and it should then be an error for version not to be present in the
changelog.

The fields are:
• Source
• Version (mandatory)
• Distribution (mandatory)
• Urgency (mandatory)
• Maintainer (mandatory)
• Date
• Changes (mandatory)

the only sane charset in an international environment. Now, we can’t switch to using UTF-8 for package control fields
and the like until dpkg has better support, but one thing we can start doing today is requesting that Debian changelogs
are UTF-8 encoded. At some point in time, we can start requiring them to do so. Checking for non-UTF8 characters in
a changelog is trivial. Dump the file through

iconv -f utf-8 -t ucs-4

discard the output, and check the return value. If there are any characters in the stream which are invalid UTF-8
sequences, iconv will exit with an error code; and this will be the case for the vast majority of other character sets.

Chapter C. Source packages (from old Packaging Manual) 125

If several versions are being returned (due to the use of -v), the urgency value should be of the
highest urgency code listed at the start of any of the versions requested followed by the con-
catenated (space-separated) comments from all the versions requested; the maintainer, version,
distribution and date should always be from the most recent version.

For the format of the Changes field see ‘Changes ’ on page 39.

If the changelog format which is being parsed always or almost always leaves a blank line between
individual change notes these blank lines should be stripped out, so as to make the resulting
output compact.

If the changelog format does not contain date or package name information this information
should be omitted from the output. The parser should not attempt to synthesise it or find it from
other sources.

If the changelog does not have the expected format the parser should exit with a nonzero exit
status, rather than trying to muddle through and possibly generating incorrect output.

A changelog parser may not interact with the user at all.

C.2.3 debian/substvars and variable substitutions

See ‘Variable substitutions: debian/substvars ’ on page 26.

C.2.4 debian/files

See ‘Generated files list: debian/files ’ on page 26.

C.2.5 debian/tmp

This is the canonical temporary location for the construction of binary packages by the binary
target. The directory tmp serves as the root of the filesystem tree as it is being constructed (for
example, by using the package’s upstream makefiles install targets and redirecting the output
there), and it also contains the DEBIAN subdirectory. See ‘Creating package files - dpkg-deb ’ on
page 115.

If several binary packages are generated from the same source tree it is usual to use several
debian/tmp something directories, for example tmp-a or tmp-doc .

Whatever tmp directories are created and used by binary must of course be removed by the
clean target.

Chapter C. Source packages (from old Packaging Manual) 126

C.3 Source packages as archives

As it exists on the FTP site, a Debian source package consists of three related files. You must have
the right versions of all three to be able to use them.

Debian source control file - .dsc This file is a control file used by dpkg-source to extract a
source package. See ‘Debian source control files – .dsc ’ on page 31.

Original source archive - package _upstream-version .orig.tar.gz This is a compressed
(with gzip -9) tar file containing the source code from the upstream authors of the pro-
gram.

Debianisation diff - package _upstream_version-revision .diff.gz This is a unified
context diff (diff -u) giving the changes which are required to turn the original source
into the Debian source. These changes may only include editing and creating plain files.
The permissions of files, the targets of symbolic links and the characteristics of special files
or pipes may not be changed and no files may be removed or renamed.

All the directories in the diff must exist, except the debian subdirectory of the top of the
source tree, which will be created by dpkg-source if necessary when unpacking.

The dpkg-source program will automatically make the debian/rules file executable
(see below).

If there is no original source code - for example, if the package is specially prepared for Debian
or the Debian maintainer is the same as the upstream maintainer - the format is slightly differ-
ent: then there is no diff, and the tarfile is named package _version .tar.gz , and preferably
contains a directory named package - version .

C.4 Unpacking a Debian source package without dpkg-source

dpkg-source -x is the recommended way to unpack a Debian source package. However, if it
is not available it is possible to unpack a Debian source archive as follows:

1 Untar the tarfile, which will create a .orig directory.
2 Rename the .orig directory to package - version .
3 Create the subdirectory debian at the top of the source tree.
4 Apply the diff using patch -p0 .
5 Untar the tarfile again if you want a copy of the original source code alongside the Debian-

ised version.

It is not possible to generate a valid Debian source archive without using dpkg-source . In par-
ticular, attempting to use diff directly to generate the .diff.gz file will not work.

Chapter C. Source packages (from old Packaging Manual) 127

C.4.1 Restrictions on objects in source packages

The source package may not contain any hard links 5 6, device special files, sockets or setuid or
setgid files. 7

The source packaging tools manage the changes between the original and Debianised source us-
ing diff and patch . Turning the original source tree as included in the .orig.tar.gz into
the debianised source must not involve any changes which cannot be handled by these tools.
Problematic changes which cause dpkg-source to halt with an error when building the source
package are:

• Adding or removing symbolic links, sockets or pipes.
• Changing the targets of symbolic links.
• Creating directories, other than debian .
• Changes to the contents of binary files.

Changes which cause dpkg-source to print a warning but continue anyway are:
• Removing files, directories or symlinks. 8

• Changed text files which are missing the usual final newline (either in the original or the
modified source tree).

Changes which are not represented, but which are not detected by dpkg-source , are:
• Changing the permissions of files (other than debian/rules) and directories.

The debian directory and debian/rules are handled specially by dpkg-source - before ap-
plying the changes it will create the debian directory, and afterwards it will make debian
/rules world-exectuable.

5This is not currently detected when building source packages, but only when extracting them.
6Hard links may be permitted at some point in the future, but would require a fair amount of work.
7Setgid directories are allowed.
8Renaming a file is not treated specially - it is seen as the removal of the old file (which generates a warning, but is

otherwise ignored), and the creation of the new one.

Chapter C. Source packages (from old Packaging Manual) 128

129

Appendix D

Control files and their fields (from old
Packaging Manual)

Many of the tools in the dpkg suite manipulate data in a common format, known as control files.
Binary and source packages have control data as do the .changes files which control the install-
ation of uploaded files, and dpkg ’s internal databases are in a similar format.

D.1 Syntax of control files

See ‘Syntax of control files’ on page 29.

It is important to note that there are several fields which are optional as far as dpkg and the
related tools are concerned, but which must appear in every Debian package, or whose omission
may cause problems.

D.2 List of fields

See ‘List of fields’ on page 32.

This section now contains only the fields that didn’t belong to the Policy manual.

D.2.1 Filename and MSDOS-Filename

These fields in Packages files give the filename(s) of (the parts of) a package in the distribution
directories, relative to the root of the Debian hierarchy. If the package has been split into several
parts the parts are all listed in order, separated by spaces.

Chapter D. Control files and their fields (from old Packaging Manual) 130

D.2.2 Size and MD5sum

These fields in Packages files give the size (in bytes, expressed in decimal) and MD5 checksum
of the file(s) which make(s) up a binary package in the distribution. If the package is split into
several parts the values for the parts are listed in order, separated by spaces.

D.2.3 Status

This field in dpkg ’s status file records whether the user wants a package installed, removed or
left alone, whether it is broken (requiring reinstallation) or not and what its current state on the
system is. Each of these pieces of information is a single word.

D.2.4 Config-Version

If a package is not installed or not configured, this field in dpkg ’s status file records the last version
of the package which was successfully configured.

D.2.5 Conffiles

This field in dpkg ’s status file contains information about the automatically-managed configura-
tion files held by a package. This field should not appear anywhere in a package!

D.2.6 Obsolete fields

These are still recognised by dpkg but should not appear anywhere any more.
Revision
Package-Revision
Package_Revision The Debian revision part of the package version was at one point in a sep-

arate control file field. This field went through several names.
Recommended Old name for Recommends.
Optional Old name for Suggests .
Class Old name for Priority .

131

Appendix E

Configuration file handling (from old
Packaging Manual)

dpkg can do a certain amount of automatic handling of package configuration files.

Whether this mechanism is appropriate depends on a number of factors, but basically there are
two approaches to any particular configuration file.

The easy method is to ship a best-effort configuration in the package, and use dpkg ’s conffile
mechanism to handle updates. If the user is unlikely to want to edit the file, but you need them
to be able to without losing their changes, and a new package with a changed version of the file is
only released infrequently, this is a good approach.

The hard method is to build the configuration file from scratch in the postinst script, and to take
the responsibility for fixing any mistakes made in earlier versions of the package automatically.
This will be appropriate if the file is likely to need to be different on each system.

E.1 Automatic handling of configuration files by dpkg

A package may contain a control area file called conffiles . This file should be a list of filenames
of configuration files needing automatic handling, separated by newlines. The filenames should
be absolute pathnames, and the files referred to should actually exist in the package.

When a package is upgraded dpkg will process the configuration files during the configuration
stage, shortly before it runs the package’s postinst script,

For each file it checks to see whether the version of the file included in the package is the same as
the one that was included in the last version of the package (the one that is being upgraded from);
it also compares the version currently installed on the system with the one shipped with the last
version.

Chapter E. Configuration file handling (from old Packaging Manual) 132

If neither the user nor the package maintainer has changed the file, it is left alone. If one or
the other has changed their version, then the changed version is preferred - i.e., if the user edits
their file, but the package maintainer doesn’t ship a different version, the user’s changes will stay,
silently, but if the maintainer ships a new version and the user hasn’t edited it the new version
will be installed (with an informative message). If both have changed their version the user is
prompted about the problem and must resolve the differences themselves.

The comparisons are done by calculating the MD5 message digests of the files, and storing the
MD5 of the file as it was included in the most recent version of the package.

When a package is installed for the first time dpkg will install the file that comes with it, unless
that would mean overwriting a file already on the filesystem.

However, note that dpkg will not replace a conffile that was removed by the user (or by a script).
This is necessary because with some programs a missing file produces an effect hard or impossible
to achieve in another way, so that a missing file needs to be kept that way if the user did it.

Note that a package should not modify a dpkg -handled conffile in its maintainer scripts. Doing
this will lead to dpkg giving the user confusing and possibly dangerous options for conffile update
when the package is upgraded.

E.2 Fully-featured maintainer script configuration handling

For files which contain site-specific information such as the hostname and networking details and
so forth, it is better to create the file in the package’s postinst script.

This will typically involve examining the state of the rest of the system to determine values and
other information, and may involve prompting the user for some information which can’t be ob-
tained some other way.

When using this method there are a couple of important issues which should be considered:

If you discover a bug in the program which generates the configuration file, or if the format of
the file changes from one version to the next, you will have to arrange for the postinst script to do
something sensible - usually this will mean editing the installed configuration file to remove the
problem or change the syntax. You will have to do this very carefully, since the user may have
changed the file, perhaps to fix the very problem that your script is trying to deal with - you will
have to detect these situations and deal with them correctly.

If you do go down this route it’s probably a good idea to make the program that generates the
configuration file(s) a separate program in /usr/sbin , by convention called package config
and then run that if appropriate from the post-installation script. The package config program
should not unquestioningly overwrite an existing configuration - if its mode of operation is geared
towards setting up a package for the first time (rather than any arbitrary reconfiguration later)

Chapter E. Configuration file handling (from old Packaging Manual) 133

you should have it check whether the configuration already exists, and require a --force flag to
overwrite it.

Chapter E. Configuration file handling (from old Packaging Manual) 134

135

Appendix F

Alternative versions of an interface -
update-alternatives (from old
Packaging Manual)

When several packages all provide different versions of the same program or file it is useful to
have the system select a default, but to allow the system administrator to change it and have their
decisions respected.

For example, there are several versions of the vi editor, and there is no reason to prevent all of
them from being installed at once, each under their own name (nvi , vim or whatever). Neverthe-
less it is desirable to have the name vi refer to something, at least by default.

If all the packages involved cooperate, this can be done with update-alternatives .

Each package provides its own version under its own name, and calls update-alternatives
in its postinst to register its version (and again in its prerm to deregister it).

See the man page update-alternatives(8) for details.

If update-alternatives does not seem appropriate you may wish to consider using diversions
instead.

Chapter F. Alternative versions of an interface - update-alternatives (from old Packaging
Manual) 136

137

Appendix G

Diversions - overriding a package’s
version of a file (from old Packaging
Manual)

It is possible to have dpkg not overwrite a file when it reinstalls the package it belongs to, and to
have it put the file from the package somewhere else instead.

This can be used locally to override a package’s version of a file, or by one package to override
another’s version (or provide a wrapper for it).

Before deciding to use a diversion, read ‘Alternative versions of an interface -
update-alternatives (from old Packaging Manual)’ on page 135 to see if you really
want a diversion rather than several alternative versions of a program.

There is a diversion list, which is read by dpkg , and updated by a special program dpkg-divert .
Please see dpkg-divert(8) for full details of its operation.

When a package wishes to divert a file from another, it should call dpkg-divert in its preinst
to add the diversion and rename the existing file. For example, supposing that a smailwrapper
package wishes to install a wrapper around /usr/sbin/smail :

if [install = "$1"]; then
dpkg-divert --package smailwrapper --add --rename \

--divert /usr/sbin/smail.real /usr/sbin/smail
fi

Testing $1 is necessary so that the script doesn’t try to add the diversion again when
smailwrapper is upgraded. The --package smailwrapper ensures that smailwrapper ’s
copy of /usr/sbin/smail can bypass the diversion and get installed as the true version.

Chapter G. Diversions - overriding a package’s version of a file (from old Packaging Manual) 138

The postrm has to do the reverse:

if [remove = "$1"]; then
dpkg-divert --package smailwrapper --remove --rename \

--divert /usr/sbin/smail.real /usr/sbin/smail
fi

Do not attempt to divert a file which is vitally important for the system’s operation - when using
dpkg-divert there is a time, after it has been diverted but before dpkg has installed the new
version, when the file does not exist.

	About this manual
	Scope
	New versions of this document
	Authors and Maintainers
	Related documents

	The Debian Archive
	The Debian Free Software Guidelines
	Sections
	The main section
	The contrib section
	The non-free section
	The non-US sections

	Copyright considerations
	Subsections
	Priorities

	Binary packages
	The package name
	The version of a package
	Version numbers based on dates

	The maintainer of a package
	The description of a package
	The single line synopsis
	The extended description

	Dependencies
	Virtual packages
	Base system
	Essential packages
	Tasks
	Maintainer Scripts
	Prompting in maintainer scripts

	Source packages
	Standards conformance
	Package relationships
	Changes to the upstream sources
	Debian changelog: =1spdebian /changelog
	Alternative changelog formats

	Error trapping in makefiles
	Time Stamps
	Restrictions on objects in source packages
	Main building script: =1spdebian /rules
	Variable substitutions: =1spdebian /substvars
	Generated files list: =1spdebian /files

	Control files and their fields
	Syntax of control files
	Source package control files -- =1spdebian /control
	Binary package control files -- =1spDEBIAN /control
	Debian source control files -- .dsc
	Debian changes files -- =1sp.changes
	List of fields
	Source
	Maintainer
	Changed-By
	Section
	Priority
	Package
	Architecture
	Essential
	Package interrelationship fields: Depends, Pre-Depends, Recommends, Suggests, Conflicts, Provides, Replaces, Enhances
	Standards-Version
	Version
	Description
	Distribution
	Date
	Format
	Urgency
	Changes
	Binary
	Installed-Size
	Files
	Closes

	User-defined fields

	Package maintainer scripts and installation procedure
	Introduction to package maintainer scripts
	Maintainer scripts Idempotency
	Controlling terminal for maintainer scripts
	Summary of ways maintainer scripts are called
	Details of unpack phase of installation or upgrade
	Details of configuration
	Details of removal and/or configuration purging

	Declaring relationships between packages
	Syntax of relationship fields
	Binary Dependencies - Depends, Recommends, Suggests, Enhances, Pre-Depends
	Conflicting binary packages - Conflicts
	Virtual packages - Provides
	Overwriting files and replacing packages - Replaces
	Overwriting files in other packages
	Replacing whole packages, forcing their removal

	Relationships between source and binary packages - Build-Depends, Build-Depends-Indep, Build-Conflicts, Build-Conflicts-Indep

	Shared libraries
	Run-time shared libraries
	ldconfig

	Run-time support programs
	Static libraries
	Development files
	Dependencies between the packages of the same library
	Dependencies between the library and other packages - the shlibs system
	The shlibs files present on the system
	How to use dpkg-shlibdeps and the =1spshlibs files
	The =1spshlibs File Format
	Providing a =1spshlibs file
	Writing the =1spdebian /shlibs.local file

	The Operating System
	Filesystem hierarchy
	Filesystem Structure
	Site-specific programs
	The system-wide mail directory

	Users and groups
	Introduction
	UID and GID classes

	System run levels and =1spinit.d scripts
	Introduction
	Writing the scripts
	Interfacing with the initscript system
	Boot-time initialization
	Example

	Console messages from =1spinit.d scripts
	Cron jobs
	Menus
	Multimedia handlers
	Keyboard configuration
	Environment variables

	Files
	Binaries
	Libraries
	Shared libraries
	Scripts
	Symbolic links
	Device files
	Configuration files
	Definitions
	Location
	Behavior
	Sharing configuration files
	User configuration files (''dotfiles``)

	Log files
	Permissions and owners
	The use of dpkg-statoverride

	Customized programs
	Architecture specification strings
	Daemons
	Using pseudo-ttys and modifying wtmp, utmp and lastlog
	Editors and pagers
	Web servers and applications
	Mail transport, delivery and user agents
	News system configuration
	Programs for the X Window System
	Providing X support and package priorities
	Packages providing an X server
	Packages providing a terminal emulator
	Packages providing a window manager
	Packages providing fonts
	Application defaults files
	Installation directory issues
	The OSF/Motif and OpenMotif libraries

	Perl programs and modules
	Emacs lisp programs
	Games

	Documentation
	Manual pages
	Info documents
	Additional documentation
	Preferred documentation formats
	Copyright information
	Examples
	Changelog files

	Introduction and scope of these appendices
	Binary packages (from old Packaging Manual)
	Creating package files - dpkg-deb
	Package control information files
	The main control information file: control
	Time Stamps

	Source packages (from old Packaging Manual)
	Tools for processing source packages
	dpkg-source - packs and unpacks Debian source packages
	dpkg-buildpackage - overall package-building control script
	dpkg-gencontrol - generates binary package control files
	dpkg-shlibdeps - calculates shared library dependencies
	dpkg-distaddfile - adds a file to =1spdebian /files
	dpkg-genchanges - generates a =1sp.changes upload control file
	dpkg-parsechangelog - produces parsed representation of a changelog
	dpkg-architecture - information about the build and host system

	The Debianised source tree
	=1spdebian /rules - the main building script
	=1spdebian /changelog
	=1spdebian /substvars and variable substitutions
	=1spdebian /files
	=1spdebian /tmp

	Source packages as archives
	Unpacking a Debian source package without dpkg-source
	Restrictions on objects in source packages

	Control files and their fields (from old Packaging Manual)
	Syntax of control files
	List of fields
	Filename and MSDOS-Filename
	Size and MD5sum
	Status
	Config-Version
	Conffiles
	Obsolete fields

	Configuration file handling (from old Packaging Manual)
	Automatic handling of configuration files by dpkg
	Fully-featured maintainer script configuration handling

	Alternative versions of an interface - update-alternatives (from old Packaging Manual)
	Diversions - overriding a package's version of a file (from old Packaging Manual)

