Debian Developer’s Reference

Adam Di Carlo, current maintainetaph@debian.org>
Christian Schwarzschwarz@debian.org>
lan Jacksorijackson@gnu.ai.mit.edu>

ver. 2.11, 08 April, 2002

Copyright Notice

copyright(©1998 — 2001 Adam Di Carlo
copyright(©1997, 1998 Christian Schwarz

This manual is free software; you may redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation; either version 2, or (at your option) any later
version.

This is distributed in the hope that it will be useful, lwithout any warranty without even the implied
warranty of merchantability or fitness for a particular purpose. See the GNU General Public License for
more details.

A copy of the GNU General Public License is availabldus/share/common-licenses/GPL in
the Debian GNUY/Linux distribution or on the World Wide Web at the GNU websitigy {//www.gnu.
org/copyleft/gpl.html). You can also obtain it by writing to the Free Software Foundation, Inc.,

59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

http://www.gnu.org/copyleft/gpl.html
http://www.gnu.org/copyleft/gpl.html

Contents

1 Scope of This Document 1
2 Applying to Become a Maintainer 3
2.1 Gettingstarted e e e e e 3
2.2 Registering asaDebiandeveloper. e 4
2.3 Debian Mentors e e 5

3 Debian Developer’s Duties 7
3.1 Maintaining Your Debian Information, 7
3.2 Maintaining Your PublicKey. e 7
3.3 Going OnVacation Gracefully 8
3.4 Coordination With Upstream Developers, 8
3.5 Managing Release Critical Bugs. e 8
3.6 Quality Assurance Effort. 9
3.7 Dealing with unreachable maintainers. 9
3.8 Retiring Gracefully. e 9

4 Mailing Lists, Servers, and Other Machines 11
4.1 Mallinglists. e e e e 11
4.2 Debianservers. e 12
421 ThemasterServer. i i e e 12

4.2.2 Theftp-masterserver. i e e 12

CONTENTS i
423 TheWWWSEIVEr. o i e e e e e e e e e 13

424 TheCVSServer. e e e e e e e e 13

425 Mirrorsof Debianservers. e 13

4.3 OtherDebian Machines. e 14

5 The Debian Archive 15
5.1 OVEIVIEW o e e e 15
5.2 SeClions. o 17
5.3 Architectures. e 18
5.4 SubSections. e 18
5.5 Packages. e 18
5.6 Distributiondirectories. 19
5.6.1 Stable, testing,andunstable. 19

5.6.2 Experimental. 20

57 Releasecodenames e e 21

6 Package uploads 23
6.1 Newpackages o i e e 23
6.2 Adding an entry talebian/changelog o o o 24
6.3 Checking the package priortoupload., 24
6.4 Generatingthe changesfile. 25
6.4.1 Theoriginalsourcetarball 25

6.4.2 Pickingadistribution L 26

6.5 Uploadingapackage e 27
6.5.1 Uploading tdtp-master 27

6.5.2 Uploading teon-US (pandora) i 27

6.5.3 Uploadsvizhiark e 28

6.5.4 Uploadsviarlangen 28

6.5.5 OtherUpload Queues. e 29

CONTENTS i

6.6 Announcing packageuploads e 29
6.7 Notification that a new package has beeninstalled 30
6.7.1 Theoverridefile. 30

7 Non-Maintainer Uploads (NMUSs) 31
7.1 Terminology. o e e e e e 31
7.2 WhocandoanNMU. 32
7.3 Whentodoasource NMU e 32
7.4 Howtodoasource NMU 33
7.4.1 Source NMU versionnumbering. 33

7.4.2 Source NMUs must have a new changelogentry 34

7.4.3 Source NMUs and the Bug Tracking System. 34

7.4.4 Buildingsource NMUS e 35

8 Porting and Being Ported 37
8.1 BeingKindtoPorters e 37
8.2 GuidelinesforPorterUploads 38
8.2.1 Recompilation Binary-Only NMU Versioning. 39

8.2.2 Whentodoasource NMU ifyouareaporter 39

8.3 ToolsforPorters e e 40
8.3.1 quinn-diff . . 40

8.3.2 buildd e 40

8.3.3 dpKg-Cross e A0

9 Moving, Removing, Renaming, Adopting, and Orphaning Packages 41
9.1 Moving packages e e e e e e 41
9.2 Removingpackages. i e e e e e e 42
9.2.1 Removing packages fromcoming o 42

9.3 Replacing orrenaming packages e e 42
9.4 Orphaningapackage e A2

9.5 Adoptingapackage. A3

CONTENTS \Y

10

11

12

Handling Bugs 45
10.1 Monitoring bugs L e e e e e e e e 45
10.2 Submitting Bugs e e e 45
10.3 RespondingtoBugs. e, 46
10.4 Whenbugs areclosedbynewuploads 46
10.5 Lintian reports o o o e e e e e e a7
10.6 Reportinglotsofbugsatonce e 47
Interaction with Prospective Developers 49
11.1 Sponsoringpackages. i i i e e e e e e e e e e e e e e 49
11.2 Advocating new developers. e e e e e e 49
11.3 Handling new maintainer applications. 50
Overview of Debian Maintainer Tools 51
12.1 dpkg-dev e e e 51
12.20intlan . . e 51
12.3 debconf . . . L e 52
12.4 debhelper e 52
125 debmake 52
12.6yada e e 52
12.7 @qUIVS . . . o 53
12.8 cvs-buildpackage e e e e 53
129 dupload e e e e e e 53
12.0QdpUt L e e e e e e 53
12.17akeroot e e e e 53
12.1debootstrap e e e e e e e 54
12.13eVsCriptsS . . L e 54
12.14dpkg-dev-el . . . e e e e e e e e e 54

12.15debget e e e e 54

Chapter 1

Scope of This Document

The purpose of this document is to provide an overview of the recommended procedures and the available
resources for Debian developers.

The procedures discussed within include how to become a maintainer (‘Applying to Become a Maintainer’
on page3d); how to upload new packages (‘Package uploads’ on gayehow and when to do ports and
interim releases of other maintainers’ packages (‘Non-Maintainer Uploads (NMUs)' on3iadeow to

move, remove, or orphan packages (‘Moving, Removing, Renaming, Adopting, and Orphaning Packages’
on page41); and how to handle bug reports (‘Handling Bugs’ on pége

The resources discussed in this reference include the mailing lists and servers (‘Mailing Lists, Servers, and
Other Machines’ on paggl); a discussion of the structure of the Debian archive (‘The Debian Archive’ on
pagelb); explanation of the different servers which accept package uploads (‘Uploadipgtaster ’

on page27); and a discussion of resources which can help maintainers with the quality of their packages
(‘Overview of Debian Maintainer Tools’ on pag4d).

It should be clear that this reference does not discuss the technical details of the Debian package nor how
to generate Debian packages. Nor does this reference detail the standards to which Debian software must
comply. All of such information can be found in the Debian Policy Mantslp(//www.debian.
org/doc/debian-policy/).

Furthermore, this documenti®t an expression of formal policit contains documentation for the Debian
system and generally agreed-upon best practices. Thus, it is what is called a “normative” document.

http://www.debian.org/doc/debian-policy/
http://www.debian.org/doc/debian-policy/

Chapter 1. Scope of This Document

Chapter 2

Applying to Become a Maintainer

2.1 Getting started

So, you've read all the documentation, you understand what everything fretltee example package is
for, and you're about to Debianize your favourite piece of software. How do you actually become a Debian
developer so that your work can be incorporated into the Project?

Firstly, subscribe taxdebian-devel@lists.debian.org> if you haven't already. Send the word
subscribe in the Subjectof an email to<debian-devel-REQUEST@lists.debian.org> . In
case of problems, contact the list administratoklg@tmaster@lists.debian.org> . More infor-

mation on available mailing lists can be found in ‘Mailing lists’ on pdge

You should subscribe and lurk (that is, read without posting) for a bit before doing any coding, and you
should post about your intentions to work on something to avoid duplicated effort.

Another good list to subscribe to tsdebian-mentors@lists.debian.org> . See ‘Debian Men-
tors’ on pagé for details. The IRC channédebian on the Linux People IRC network (e.g¢.debian.org)
can also be helpful.

When you know how you want to contribute to Debian GNU/Linux, you should get in contact with existing
Debian maintainers who are working on similar tasks. That way, you can learn from experienced developers.
For example, if you are interested in packaging existing software for Debian you should try to get a sponsor.
A sponsor will work together with you on your package and upload it to the Debian archive once he is happy
with the packaging work you have done. You can find a sponsor by mailingdbbian-mentors@
lists.debian.org> mailing list, describing your package and yourself and asking for a sponsor (see
‘Sponsoring packages’ on padg® for more information on sponsoring). On the other hand, if you are
interested in porting Debian to alternative architectures or kernels you can subscribe to port specific mailing
lists and ask there how to get started. Finally, if you are interested in documentation or Quality Assurance
(QA) work you can join maintainers already working on these tasks and submit patches and improvements.

Chapter 2. Applying to Become a Maintainer 4

2.2 Registering as a Debian developer

Before you decide to register with Debian GNU/Linux, you will need to read all the information available at
the New Maintainer’s Corneih{tp://www.debian.org/devel/join/newmaint). It describes

exactly the preparations you have to do before you can register to become a Debian developer. For ex-
ample, before you apply, you have to to read the Debian Social Conttget fvww.debian.org/

social_contract). Registering as a developer means that you agree with and pledge to uphold the
Debian Social Contract; it is very important that maintainers are in accord with the essential ideas behind
Debian GNU/Linux. Reading the GNU Manifestatip://www.gnu.org/gnu/manifesto.html)

would also be a good idea.

The process of registering as a developer is a process of verifying your identity and intentions, and checking
your technical skills. As the number of people working on Debian GNU/Linux has grown to over 800 people
and our systems are used in several very important places we have to be careful about being compromised.
Therefore, we need to verify new maintainers before we can give them accounts on our servers and let them
upload packages.

Before you actually register you should have shown that you can do competent work and will be a good
contributor. You can show this by submitting patches through the Bug Tracking System or having a package
sponsored by an existing maintainer for a while. Also, we expect that contributors are interested in the whole
project and not just in maintaining their own packages. If you can help other maintainers by providing further

information on a bug or even a patch, then do so!

Registration requires that you are familiar with Debian’s philosophy and technical documentation. Further-
more, you need a GPG key which has been signed by an existing Debian maintainer. If your GPG key is
not signed yet, you should try to meet a Debian maintainer in person to get your key signed. There’'s a GPG
Key Signing Coordination pagénitp://nm.debian.org/gpg.php) which should help you find a
maintainer close to you (If you cannot find a Debian maintainer close to you, there’s an alternative way to
pass the ID check. You can send in a photo ID signed with your GPG key. Having your GPG key signed is
the preferred way, however. See the identification pag@:(/www.debian.org/devel/join/

nm-step2) for more information about these two options.)

If you do not have an OpenPGP key yet, generate one. Every developer needs a OpenPGP key in order to
sign and verify package uploads. You should read the manual for the software you are using, since it has
much important information which is critical to its security. Many more security failures are due to human
error than to software failure or high-powered spy technigues. See ‘Maintaining Your Public Key’ oi page

for more information on maintaining your public key.

Debian uses th&NU Privacy Guard (packageynupg version 1 or better) as its baseline standard. You
can use some other implementation of OpenPGP as well. Note that OpenPGP is a open standard based on
RFC 2440 ttp://www.gnupg.org/rfc2440.html).

The recommended public key algorithm for use in Debian development work is the DSA (sometimes call
“DSS” or “DH/EIGamal”). Other key types may be used however. Your key length must be at least 1024
bits; there is no reason to use a smaller key, and doing so would be much less secure. Your key must be

http://www.debian.org/devel/join/newmaint
http://www.debian.org/social_contract
http://www.debian.org/social_contract
http://www.gnu.org/gnu/manifesto.html
http://nm.debian.org/gpg.php
http://www.debian.org/devel/join/nm-step2
http://www.debian.org/devel/join/nm-step2
http://www.gnupg.org/rfc2440.html

Chapter 2. Applying to Become a Maintainer 5

signed with at least your own user ID; this prevents user ID tampegipg.does this automatically.

If your public key isn’t on public key servers suchagp5.ai.mit.edu , please read the documentation
available locally infusr/share/doc/pgp/keyserv.doc . That document contains instructions on
how to put your key on the public key servers. The New Maintainer Group will put your public key on the
servers if it isn’t already there.

Some countries restrict the use of cryptographic software by their citizens. This need not impede one’s ac-
tivities as a Debian package maintainer however, as it may be perfectly legal to use cryptographic products
for authentication, rather than encryption purposes (as is the case in France). Debian GNU/Linux does not
require the use of cryptograplayacryptography in any manner. If you live in a country where use of cryp-

tography even for authentication is forbidden then please contact us so we can make special arrangements.

To apply as a new maintainer, you need an existing Debian maintainer to verify your applicatiad- (an
vocatg. After you have contributed to Debian for a while, and you want to apply to become a registered
developer, an existing developer with whom you have worked over the past months has to express his belief
that you can contribute to Debian successfully.

When you have found an advocate, have your GPG key signed and have already contributed to Debian for
a while, you're ready to apply. You can simply register on our application gage/(nm.debian.
org/newnm.php). After you have signed up, your advocate has to confirm your application. When your
advocate has completed this step you will be assigned an Application Manager who will go with you through
the necessary steps of the New Maintainer process. You can always check your status on the applications
status boardH(ttp://nm.debian.org/).

For more details, please consult New Maintainer’s Corngp(//www.debian.org/devel/join/
newmaint) at the Debian web site. Make sure that you are familiar with the necessary steps of the New
Maintainer process before actually applying. If you are well prepared, you can save a lot of timer later on.

2.3 Debian Mentors

The mailing list<debian-mentors@lists.debian.org> has been set up for novice maintainers
who seek help with initial packaging and other developer-related issues. Every new developer is invited to
subscribe to that list (see ‘Mailing lists’ on paf& for details).

Those who prefer one-on-one help (e.qg., via private email) should also post to that list and an experienced
developer will volunteer to help.

http://nm.debian.org/newnm.php
http://nm.debian.org/newnm.php
http://nm.debian.org/
http://www.debian.org/devel/join/newmaint
http://www.debian.org/devel/join/newmaint

Chapter 2. Applying to Become a Maintainer

Chapter 3

Debian Developer’s Duties

3.1 Maintaining Your Debian Information

There’s a LDAP database containing many informations concerning all developers, you can access it at
https://db.debian.org/ . You can update your password (this password is propagated to most of
the machines that are accessible to you), your address, your country, the latitude and longitude of the point
where you live, phone and fax numbers, your preferred shell, your IRC nickname, your web page and the
email that you're using as alias for your debian.org email. Most of the information is not accessible to
the public, for more details about this database, please read its online documentation that you can find at
http://db.debian.org/doc-general.html

You have to keep the information available there up to date.

3.2 Maintaining Your Public Key

Be very careful with your private keys. Do not place them on any public servers or multiuser machines, such
asmaster.debian.org . Back your keys up; keep a copy offline. Read the documentation that comes
with your software; read the PGP FAQt{p://www.cam.ac.uk.pgp.net/pgpnet/pgp-faq/).

If you add signatures to your public key, or add user identities, you can update the debian keyring by sending
your key to the key server &eyring.debian.org . If you need to add a completely new key, or remove

an old key, send mail tekeyring-maint@debian.org> . The same key extraction routines discussed

in ‘Registering as a Debian developer’ on pagapply.

You can find a more in-depth discussion of Debian key maintenance in the documentatiorméditrekeyring
package.

https://db.debian.org/
http://db.debian.org/doc-general.html
http://www.cam.ac.uk.pgp.net/pgpnet/pgp-faq/

Chapter 3. Debian Developer’s Duties 8

3.3 Going On Vacation Gracefully

Most developers take vacations, and usually this means that they can’t work for Debian and they can’t be
reached by email if any problem occurs. The other developers need to know that you're on vacation so
that they’ll do whatever is needed when such a problem occurs. Usually this means that other developers
are allowed to NMU (see ‘Non-Maintainer Uploads (NMUs)' on pa&d your package if a big problem
(release critical bugs, security update, ...) occurs while you're on vacation.

In order to inform the other developers, there’s two things that you should do. First send asadgbian-private @
lists.debian.org> giving the period of time when you will be on vacation. You can also give some
special instructions on what to do if any problem occurs. Be aware that some people don't care for vacation
notices and don’t want to read them; you should prepend “[VAC] " to the subject of your message so that it
can be easily filtered.

Next you should update your information available in the Debian LDAP database and mark yourself as
“on vacation” (this information is only accessible to debian developers). Don't forget to remove the “on
vacation” flag when you come back!

3.4 Coordination With Upstream Developers

A big part of your job as Debian maintainer will be to stay in contact with the upstream developers. Debian
users will sometimes report bugs to the Bug Tracking System that are not specific to Debian. You must
forward these bug reports to the upstream developers so that they can be fixed in a future release. It's not
your job to fix non-Debian specific bugs. However, if you are able to do so, you are encouraged to contribute
to upstream development of the package by providing a fix for the bug. Debian users and developers will
often submit patches to fix upstream bugs, and you should evaluate and forward these patches upstream.

If you need to modify the upstream sources in order to build a policy conformant package, then you should
propose a nice fix to the upstream developers which can be included there, so that you won’t have to modify
the sources of the next upstream version. Whatever changes you need, always try not to fork from the
upstream sources.

3.5 Managing Release Critical Bugs

Release Critical Bugs (RCB) are all bugs that have severitical, grave or serious Those bugs can

delay the Debian release and/or can justify the removal of a package at freeze time. That’s why these bugs
need to be corrected as quickly as possible. You must be aware that some developers who are part of the
Debian Quality Assurancénitp://ga.debian.org/) effort are following those bugs and try to help

you whenever they are able. But if you can’t fix such bugs within 2 weeks, you should either ask for help by
sending a mail to the Quality Assurance (QA) gretgebian-ga@lists.debian.org> , Or explain

http://qa.debian.org/

Chapter 3. Debian Developer’s Duties 9

your difficulties and present a plan to fix them by sending a mail to the proper bug report. Otherwise, people
from the QA group may want to do a Non-Maintainer Upload (see ‘Non-Maintainer Uploads (NMUs)’ on
page3l) after trying to contact you (they might not wait as long as usual before they do their NMU if they
have seen no recent activity from you in the BTS).

3.6 Quality Assurance Effort

Even though there is a dedicated group of people for Quality Assurance, QA duties are not reserved solely
for them. You can participate in this effort by keeping your packages as bug-free as possible, and as lintian-
clean (see ‘Lintian reports’ on pagk) as possible. If you do not find that possible, then you should
consider orphaning some of your packages (see ‘Orphaning a package’ ofZpafjikernatively, you may

ask the help of other people in order to catch up the backlog of bugs that you have (you can ask for help on
<debian-ga@lists.debian.org> or <debian-devel@lists.debian.org>).

3.7 Dealing with unreachable maintainers

If you notice that a package is lacking maintenance, you should make sure the maintainer is active and will
continue to work on his packages. Try contacting him yourself.

If you do not get a reply after a few weeks you should collect all useful information about this maintainer.
Start by logging into the Debian Developer’'s Databdsg&é://db.debian.org/) and doing a full

search to check whether the maintainer is on vacation and when he was last seen. Collect any important
package names he maintains and any Release Critical bugs filled against them.

Send all this information tecdebian-ga@lists.debian.org> , in order to let the QA people do
whatever is needed.

3.8 Retiring Gracefully
If you choose to leave the Debian project, you should make sure you do the following steps:

1. Orphan all your packages, as described in ‘Orphaning a package’ orlpage

2. Send an email about how you are leaving the projestdebian-private@lists.debian.
org> .

3. Notify the Debian key ring maintainers that you are leaving by emailingkeyring-maint@
debian.org>

https://db.debian.org/

Chapter 3. Debian Developer’s Duties

10

11

Chapter 4

Mailing Lists, Servers, and Other Machines

In this chapter you will find a very brief road map of the Debian mailing lists, the main Debian servers, and
other Debian machines which may be available to you as a developer.

4.1 Mailing lists

The mailing list server is dists.debian.org . Mail debian- foo -REQUEST @lists.debian.org ,
wheredebian- foo isthe name of the list, with the worlibscribe intheSubjecto subscribe to the list
orunsubscribe to unsubscribe. More detailed instructions on how to subscribe and unsubscribe to the

mailing lists can be found dittp://www.debian.org/MailingLists/subscribe , ftp:/l
ftp.debian.org/debian/doc/mailing-lists.txt or locally in/usr/share/doc/debian
/mailing-lists.txt if you have thedoc-debian package installed.

When replying to messages on the mailing list, please do not send a carborC&dpy the original poster
unless they explicitly request to be copied. Anyone who posts to a mailing list should read it to see the
responses.

The following are the core Debian mailing listsdebian-devel@lists.debian.org> , <debian-policy@
lists.debian.org> , <debian-user@lists.debian.org> , <debian-private@lists.

debian.org> , <debian-announce@lists.debian.org> , and<debian-devel-announce@
lists.debian.org> . All developers are expected to be subscribed to at fededbian-devel-announce @
lists.debian.org> . There are other mailing lists available for a variety of special topicsh&pe
IIwww.debian.org/MailingLists/subscribe for a list. Cross-posting (sending the same mes-
sage to multiple lists) is discouraged.

<debian-private@lists.debian.org> is a special mailing list for private discussions amongst
Debian developers. It is meant to be used for posts which for whatever reason should not be published
publically. As such, itis a low volume list, and users are urged not tecdsbian-private @lists.

debian.org> unless it is really necessary. Moreover, ot forward email from that list to anyone.

http://www.debian.org/MailingLists/subscribe
ftp://ftp.debian.org/debian/doc/mailing-lists.txt
ftp://ftp.debian.org/debian/doc/mailing-lists.txt
http://www.debian.org/MailingLists/subscribe
http://www.debian.org/MailingLists/subscribe

Chapter 4. Mailing Lists, Servers, and Other Machines 12

Archives of this list are not available on the web for obvious reasons, but you can see them using your

shell accountnaster.debian.org and looking in thé'debian/archive/debian-private di-
rectory.
<debian-email@lists.debian.org> is a special mailing list used as a grab-bag for Debian related

correspondence such as contacting upstream authors about licenses, bugs, etc. or discussing the project with
others where it might be useful to have the discussion archived somewhere.

As ever on the net, please trim down the quoting of articles you're replying to. In general, please adhere to
the usual conventions for posting messages.

Online archives of mailing lists are availablerditp:/lists.debian.org/

4.2 Debian servers

Debian servers are well known servers which serve critical functions in the Debian project. Every developer
should know what these servers are and what they do.

If you have a problem with the operation of a Debian server, and you think that the system operators need
to be notified of this problem, please find the contact address for the particular machtie/atb.
debian.org/machines.cgi . If you have a non-operating problems (such as packages to be remove,
suggestions for the web site, etc.), generally you'll report a bug against a “pseudo-package”. See ‘Submitting
Bugs’ on pagel5 for information on how to submit bugs.

4.2.1 The master server

master.debian.org is the canonical location for the Bug Tracking System (BTS). If you plan on doing
some statistical analysis or processing of Debian bugs, this would be the place to do it. Please describe your
plans on<debian-devel@lists.debian.org> before implementing anything, however, to reduce
unnecessary duplication of effort or wasted processing time.

All Debian developers have accountsrmaster.debian.org . Please take care to protect your password
to this machine. Try to avoid login or upload methods which send passwords over the Internet in the clear.

If you find a problem withmaster.debian.org such as disk full, suspicious activity, or whatever, send
an email to<debian-admin@debian.org>

4.2.2 The ftp-master server

The ftp-master serveftp-master.debian.org (or auric.debian.org), holds the canonical
copy of the Debian archive (excluding the non-US packages). Generally, package uploads go to this server;
see ‘Package uploads’ on paze

http://lists.debian.org/
http://db.debian.org/machines.cgi
http://db.debian.org/machines.cgi

Chapter 4. Mailing Lists, Servers, and Other Machines 13

Problems with the Debian FTP archive generally need to be reported as bugs agdipsi¢hén.org
pseudo-package or an email<@tpmaster@debian.org> , but also see the procedures in ‘Moving,
Removing, Renaming, Adopting, and Orphaning Packages’ on4hge

4.2.3 The WWW server

The main web servewww.debian.org , is also known aklecker.debian.org . All developers are
given accounts on this machine.

If you have some Debian-specific information which you want to serve up on the web, you can do this
by putting material in thgublic_html directory under your home directory. You should do this on
klecker.debian.org . Any material you put in those areas are accessible via thehifgl//people.debian.org/”
You should only use this particular location because it will be backed up, whereas on other hosts it won't.
Please do not put any material on Debian servers not relating to Debian, unless you have prior permission.
Send mail to<debian-devel@lists.debian.org> if you have any questions.

If you find a problem with the Debian web server, you should generally submit a bug against the pseudo-
packagewww.debian.org . First check whether or not someone else has already reported the problem
on the Bug Tracking Systenhitp://bugs.debian.org/www.debian.org).

4.2.4 The CVS server

cvs.debian.org is also known asklecker.debian.org , discussed above. If you need to use a
publically accessible CVS server, for instance, to help coordinate work on a package between many different
developers, you can request a CVS area on the server.

Generally,cvs.debian.org offers a combination of local CVS access, anonymous client-server read-
only access, and full client-server access throsgjin. Also, the CVS area can be accessed read-only via
the Web atttp://cvs.debian.org/

To request a CVS area, send a request via emaitlgbian-admin@debian.org> . Include the name
of the requested CVS area, Debian account should own the CVS root area, and why you need it.

4.2.5 Mirrors of Debian servers

The web and FTP servers have several mirrors available. Please do not put heavy load on the canonical FTP
or web servers. Ideally, the canonical servers only mirror out to a first tier of mirrors, and all user access
is to the mirrors. This allows Debian to better spread its bandwidth requirements over several servers and
networks. Note that newer push mirroring techniques ensure that mirrors are as up-to-date as they can be.

The main web page listing the available public FTP (and, usually, HTTP) servers can be fduipd at
IIwww.debian.org/distrib/ftplist . More information concerning Debian mirrors can be found

http://bugs.debian.org/www.debian.org
http://cvs.debian.org/
http://www.debian.org/distrib/ftplist
http://www.debian.org/distrib/ftplist

Chapter 4. Mailing Lists, Servers, and Other Machines 14

at http://www.debian.org/mirror/ . This useful page includes information and tools which can
be helpful if you are interested in setting up your own mirror, either for internal or public access.

Note that mirrors are generally run by third-parties who are interested in helping Debian. As such, develop-
ers generally do not have accounts on these machines.

4.3 Other Debian Machines

There are other Debian machines which may be made available to you. You can use these for Debian-related
purposes as you see fit. Please be kind to system administrators, and do not use up tons and tons of disk
space, network bandwidth, or CPU without first getting the approval of the local maintainers. Usually these
machines are run by volunteers. Generally, these machines are for porting activities.

Aside from the servers mentioned in ‘Debian servers’ on pefjehere is a list of machines available to
Debian developers étitp://db.debian.org/machines.cgi

http://www.debian.org/mirror/
http://db.debian.org/machines.cgi

15

Chapter 5

The Debian Archive

5.1 Overview

The Debian GNU/Linux distribution consists of a lot of Debian packagieh('s, currently around 6800)
and a few additional files (documentation, installation disk images, etc.).

Here is an example directory tree of a complete Debian archive:

dists/stable/main/
dists/stable/main/binary-all/
dists/stable/main/binary-all/admin/
dists/stable/main/binary-all/base/
dists/stable/main/binary-all/comm/
dists/stable/main/binary-all/devel/

dists/stable/main/binary-i386/
dists/stable/main/binary-i386/admin/
dists/stable/main/binary-i386/base/

dists/stable/main/binary-m68k/
dists/stable/main/binary-m68k/admin/
dists/stable/main/binary-m68k/base/

dists/stable/main/source/
dists/stable/main/source/admin/
dists/stable/main/source/base/

dists/stable/main/disks-i386/

Chapter 5. The Debian Archive

dists/stable/main/disks-m68k/

dists/stable/contrib/
dists/stable/contrib/binary-all/
dists/stable/contrib/binary-i386/
dists/stable/contrib/binary-m68k/
dists/stable/contrib/source/
dists/stable/non-free/
dists/stable/non-free/binary-all/
dists/stable/non-free/binary-i386/
dists/stable/non-free/binary-m68k/
dists/stable/non-free/source/

dists/testing/
dists/testing/main/

dists/testing/contrib/
dists/testing/non-free/
dists/unstable
dists/unstable/main/
dists/unstable/contrib/
dists/unstable/non-free/
pool/

pool/a/

pool/a/apt/

pool/b/
pool/b/bash/

pool/liba/
pool/liba/libalias-perl/

16

Chapter 5. The Debian Archive 17

pool/m/
pool/m/mailx/

As you can see, the top-level directory contains two directodists/ andpool/ . The latter is a “pool”

in which the packages actually are, and which is handled by the archive maintenance database and the
accompanying programs. The former contains the distributsiable testingandunstable Each of those
distribution directories is divided in equivalent subdirectories purpose of which is equal, so we will only
explain how it looks in stable. Theackages andSources files in the distribution subdirectories can
reference files in thpool/ directory.

dists/stable contains three directories, namehain contrib, andnon-free

In each of the areas, there is a directory with the source packspexé), a directory for each supported
architecturelfinary-i386 , binary-m68k , etc.), and a directory for architecture independent packages
(binary-all).

The main area contains additional directories which holds the disk images and some essential pieces of
documentation required for installing the Debian distribution on a specific architeclistes{386
disks-m68k , etc.).

Thebinary-* andsourcedirectories are divided further insubsections

5.2 Sections

The main section of the Debian archive is what makes up dffecial Debian GNU/Linux distribution .
Themainsection is official because it fully complies with all our guidelines. The other two sections do not,
to different degrees; as such, they aat officially part of Debian GNU/Linux.

Every package in the main section must fully comply with the Debian Free Software Guidéilitges (
/lIwww.debian.org/social_contract#guidelines) (DFSG) and with all other policy require-
ments as described in the Debian Policy Manuép(//www.debian.org/doc/debian-policy/).
The DFSG is our definition of “free software.” Check out the Debian Policy Manual for details.

Packages in theontrib section have to comply with the DFSG, but may fail other requirements. For in-
stance, they may depend on non-free packages.

Packages which do not apply to the DFSG are placed imtrefreesection. These packages are not
considered as part of the Debian distribution, though we support their use, and we provide infrastructure
(such as our bug-tracking system and mailing lists) for non-free software packages.

The Debian Policy Manuah(tp://www.debian.org/doc/debian-policy/) contains a more
exact definition of the three sections. The above discussion is just an introduction.

http://www.debian.org/social_contract#guidelines
http://www.debian.org/social_contract#guidelines
http://www.debian.org/doc/debian-policy/
http://www.debian.org/doc/debian-policy/

Chapter 5. The Debian Archive 18

The separation of the three sections at the top-level of the archive is important for all people who want to
distribute Debian, either via FTP servers on the Internet or on CD-ROMs: by distributing onfyatime

and contrib sections, one can avoid any legal risks. Some packages imotindreesection do not allow
commercial distribution, for example.

On the other hand, a CD-ROM vendor could easily check the individual package licenses of the packages in
non-freeand include as many on the CD-ROMs as he’s allowed to. (Since this varies greatly from vendor to
vendor, this job can't be done by the Debian developers.)

5.3 Architectures

In the first days, the Linux kernel was only available for the Intel i386 (or greater) platforms, and so was
Debian. But when Linux became more and more popular, the kernel was ported to other architectures, too.

The Linux 2.0 kernel supports Intel x86, DEC Alpha, SPARC, Motorola 680x0 (like Atari, Amiga and
Macintoshes), MIPS, and PowerPC. The Linux 2.2 kernel supports even more architectures, including ARM
and UltraSPARC. Since Linux supports these platforms, Debian decided that it should, too. Therefore,
Debian has ports underway; in fact, we also have ports underway to non-Linux kernel. Asidage(our

name for Intel x86), there im68k alpha powerp¢ sparg hurd-i386 andarm, as of this writing.

Debian GNU/Linux 1.3 is only available a886. Debian 2.0 shipped fa886 and m68karchitectures.
Debian 2.1 ships for thi@86, m68k alpha andsparcarchitectures. Debian 2.2 adds support fontbererpc
andarm architectures.

Information for developers or uses about the specific ports are available at the Debian Ports web pages
(http://www.debian.org/ports/).

5.4 Subsections

The sectionsnain contrib, andnon-freeare split intosubsectiongo simplify the installation process and

the maintainance of the archive. Subsections are not formally defined, except perhaps the ‘base’ subsection.
Subsections simply exist to simplify the organization and browsing of available packages. Please check the
current Debian distribution to see which sections are available.

Note however that with the introduction of package pools (see the topgewdldirectory), the subsections
in the form of subdirectories will eventually cease to exist. They will be kept in the packages’ ‘Section’
header fields, though.

5.5 Packages

There are two types of Debian packages, namelyrceandbinary packages.

http://www.debian.org/ports/

Chapter 5. The Debian Archive 19

Source packages consist of either two or three filesdsa file, and either atar.gz file or both an
.orig.tar.gz and a.diff.gz file.

If a package is developed specially for Debian and is not distributed outside of Debian, there is just one
tar.gz file which contains the sources of the program. If a package is distributed elsewhere too, the
.orig.tar.gz file stores the so-calledpstream source codéhat is the source code that's distributed
from theupstream maintainefoften the author of the software). In this case, tfi#.gz contains the
changes made by the Debian maintainer.

The.dsc lists all the files in the source package together with checksomdSgums) and some additional
info about the package (maintainer, version, etc.).

5.6 Distribution directories

The directory system described in the previous chapter is itself contained wiitiibution directories
Each distribution is actually contained in theol directory in the top-level of the Debian archive itself.

To summarize, the Debian archive has a root directory within an FTP server. For instance, at the mirror site,
ftp.us.debian.org , the Debian archive itself is contained/aebian , which is a common location
(another idpub/debian).

A distribution is comprised of Debian source and binary packages, and the respgotikees and
Packages index files, containing the header information from all those packages. The former are kept
in thepool/ directory, while the latter are kept in tliists/ directory of the archive (because of back-
wards compatibility).

5.6.1 Stable, testing, and unstable

There are always distributions callsthble(residing indists/stable), one calledesting(residing in
dists/testing), and one calledinstable(residing indists/unstable). This reflects the develop-
ment process of the Debian project.

Active development is done in thastabledistribution (that's why this distribution is sometimes called the
development distributign Every Debian developer can update his or her packages in this distribution at any
time. Thus, the contents of this distribution change from day-to-day. Since no special effort is done to make
sure everything in this distribution is working properly, it is sometimes “unstable.”

Packages get copied froomstableto testingif they satisfy certain criteria. To get intestingdistribution,

a package needs to be in the archive for two weeks and not have any release critical bugs. After that period,
it will propagate intotestingas soon as anything it depends on is also added. This process is automatic.
You can see some notes on this system as welpdate _excuses (describing which packages are valid
candidates, which are not, and why noth#p://ftp-master.debian.org/testing/

ftp.us.debian.org
http://ftp-master.debian.org/testing/

Chapter 5. The Debian Archive 20

After a period of development, once the release manager deems figstimgdistribution is frozen, meaning

that the policies which control how packages move framstableto testing are tightened. Packages which

are too buggy are removed. No changes are allowed@stingexcept for bug fixes. After some time has
elapsed, depending on progress,téstingdistribution goes into a ‘deep freeze’, when no changes are made

to it except those needed for the installation system. This is called a “test cycle”, and it can last up to two
weeks. There can be several test cycles, until the distribution is prepared for release, as decided by the release
manager. At the end of the last test cycle, thstingdistribution is renamed tetable overriding the old
stabledistribution, which is removed at that time (although it can be fourat@tive.debian.org)

This development cycle is based on the assumption thairtkabledistribution becomestableafter pass-

ing a period of being itesting Even once a distribution is considered stable, a few bugs inevitably remain
— that's why the stable distribution is updated every now and then. However, these updates are tested
very carefully and have to be introduced into the archive individually to reduce the risk of introducing new
bugs. You can find proposed additionsstablein the proposed-updates directory. Those packages

in proposed-updates that pass muster are periodically moved as a batch into the stable distribution
and the revision level of the stable distribution is incremented (e.g., ‘1.3’ becomes ‘1.3r1’, ‘2.0r2’ becomes
‘2.0r3’, and so forth).

Note that development undenstablecontinues during the “freeze” period, since testabledistribution
remains in place in parallel wittesting

5.6.2 Experimental

The experimentabistribution is a specialty distribution. It is not a full distribution in the same sense as
‘stable’ and ‘unstable’ are. Instead, it is meant to be a temporary staging area for highly experimental
software where there’s a good chance that the software could break your system, or software that’s just too
unstable even for thanstabledistribution (but there is a reason to package it nevertheless). Users who
download and install packages framperimentabre expected to have been duly warned. In short, all bets

are off for theexperimentatlistribution.

If there is a chance that the software could do grave damage to a system, it is likely to be better to put it into
experimental For instance, an experimental compressed file system should probably g&petimental

Whenever there is a new upstream version of a package that introduces new features but breaks a lot of old
ones, it should either not be uploaded, or be uploadesgerimental A new, beta, version of some software

which uses completely different configuration can go experimentalat the maintainer’s discretion. If you

are working on an incompatible or complex upgrade situation, you can alsexpseémentahs a staging

area, so that testers can get early access.

Some experimental software can still go intastable with a few warnings in the description, but that isn’t
recommended because packages foorstableare expected to propagatetéstingand thus tastable

New software which isn’t likely to damage your system can go directlyumtstable

An alternative t@experimentais to use your personal web spacep@ople.debian.org (klecker.debian.org

Chapter 5. The Debian Archive 21

5.7 Release code names

Every released Debian distribution hasale nameDebian 1.1 is called ‘buzz’; Debian 1.2, ‘rex’; Debian

1.3, ‘bo’; Debian 2.0, ‘hamm’; Debian 2.1, ‘slink’; Debian 2.2, ‘potato’; and Debian 3.0, ‘woody’. There

is also a “pseudo-distribution”, called ‘sid’, which is the current ‘unstable’ distribution; since packages are
moved from ‘unstable’ to ‘testing’ as they approach stability, ‘sid’ itself is never released. As well as the
usual contents of a Debian distribution, ‘sid’ contains packages for architectures which are not yet officially
supported or released by Debian. These architectures are planned to be integrated into the mainstream
distribution at some future date.

Since Debian has an open development model (i.e., everyone can participate and follow the development)
even the ‘unstable’ and ‘testing’ distributions are distributed to the Internet through the Debian FTP and
HTTP server network. Thus, if we had called the directory which contains the release candidate version
‘testing’, then we would have to rename it to ‘stable’ when the version is released, which would cause all
FTP mirrors to re-retrieve the whole distribution (which is quite large).

On the other hand, if we called the distribution directofiEbian-x.yfrom the beginning, people would
think that Debian releasey is available. (This happened in the past, where a CD-ROM vendor built a
Debian 1.0 CD-ROM based on a pre-1.0 development version. That's the reason why the first official
Debian release was 1.1, and not 1.0.)

Thus, the names of the distribution directories in the archive are determined by their code names and not
their release status (e.g., ‘slink’). These names stay the same during the development period and after the
release; symbolic links, which can be changed easily, indicate the currently released stable distribution.
That's why the real distribution directories use ttoale nameswhile symbolic links forstable testing and
unstablepoint to the appropriate release directories.

Chapter 5. The Debian Archive

22

23

Chapter 6

Package uploads

6.1 New packages

If you want to create a new package for the Debian distribution, you should first check the Work-Needing

and Prospective Packages (WNPR){://www.debian.org/devel/wnpp/) list. Checking the
WNPP list ensures that no one is already working on packaging that software, and that effort is not dupli-
cated. Read the WNPP web pages(://www.debian.org/devel/wnpp/) for more information.

Assuming no one else is already working on your prospective package, you must then submit a bug report
(‘Submitting Bugs’ on pagé5) against the pseudo packag®pp describing your plan to create a new
package, including, but not limiting yourself to, a description of the package, the license of the prospective
package and the current URL where it can be downloaded from.

You should set the subject of the bug to “ITieo — short descriptiofy substituting the name of the new
package fofoo. The severity of the bug report must be setvishlist If you feel it's necessary, send a copy

to <debian-devel@lists.debian.org> by putting the address in the-Debbugs-CC: header

of the message (no, don’'t USK:, because that way the message’s subject won't indicate the bug number).

Please include €loses: bug# nnnnn entry on the changelog of the new package in order for the bug
report to be automatically closed once the new package is installed on the archive ("When bugs are closed
by new uploads’ on pagt6).

There are a number of reasons why we ask maintainers to announce their intentions:
¢ It helps the (potentially new) maintainer to tap into the experience of people on the list, and lets them
know if anyone else is working on it already.
e It lets other people thinking about working on the package know that there already is a volunteer, so
efforts may be shared.
e It lets the rest of the maintainers know more about the package than the one line description and the
usual changelog entry “Initial release” that gets postedetnian-devel-changes

http://www.debian.org/devel/wnpp/
http://www.debian.org/devel/wnpp/

Chapter 6. Package uploads 24

e ltis helpful to the people who live off unstable (and form our first line of testers). We should encourage
these people.

e The announcements give maintainers and other interested parties a better feel of what is going on, and
what is new, in the project.

6.2 Adding an entry to debian/changelog

Changes that you make to the package need to be recordeddeltfen/changelog . These changes
should provide a concise description of what was changed, why (if it's in doubt), and note if any bugs were
closed. They also record when the packages was completed. This file will be installesal/&#hare

/doc/ package /changelog.Debian.gz , or/usr/share/doc/ package /changelog.gz for

native packages.

The debian/changelog file conform to a certain structure, with a number of different fields. One field
of note, thedistribution is described in ‘Picking a distribution’ on pag@é. More information about the
structure structure of this file can be found in the Debian Policy section titledian/changelog "~

Changelog entries can be used to automatically close Debian bugs when the package is installed into the
archive. See ‘When bugs are closed by new uploads’ on péage

It is conventional that the changelog entry notating that the package contains a new upstream version of the
software looks like this:

* new upstream version

There are tools to help you create entries and finalizeliamgelog for release — sealevscripts
on pages4 and ‘dpkg-dev-el ' on pageb4.

6.3 Checking the package prior to upload

Before you upload your package, you should do basic testing on it. At a minimum, you should try the
following activities (you'll need to have an older version of the same Debian package around):

¢ Install the package and make sure the software works, or upgrade the package from an older version
to your new version if a Debian package for it already exists.

e Runlintian over the package. You can rlintian as follows:lintian -v package-version .changes
This will check the source package as well as the binary package. If you don’t understand the out-
put thatlintian generates, try adding the switch, which will causdintian to output a very
verbose description of the problem.

Chapter 6. Package uploads 25

Normally, a package shoultbt be uploaded if it causes lintian to emit errors (they will start vidjh
For more information otintian , see lintian ' on page51

e Downgrade the package to the previous version (if one exists) — this tegiedtren andprerm
scripts.

e Remove the package, then reinstall it.

6.4 Generating the changes file

When a package is uploaded to the Debian FTP archive, it must be accompanietiéngges file, which
gives directions to the archive maintainers for its handling. This is usually generatpidrgenchanges
during the normal package build process.

The changes file is a control file with the following fields:
Format
Date
Source
Binary
Architecture
Version
Distribution
Urgency
Maintainer
Description
Changes
Files

All of these fields are mandatory for a Debian upload. See the list of control fields in the Debian Policy
Manual ttp://www.debian.org/doc/debian-policy/) for the contents of these fields. You

can close bugs automatically using fhescription field, see ‘When bugs are closed by new uploads’
on pageilo.

6.4.1 The original source tarball

The first time a version is uploaded which corresponds to a particular upstream version, the original source
tar file should be uploaded and included in tbleanges file. Subsequently, this very same tar file should
be used to build the new diffs andsc files, and will not need to be re-uploaded.

By default,dpkg-genchanges anddpkg-buildpackage will include the original source tar file if
and only if the Debian revision part of the source version number is 0 or 1, indicating a new upstream
version. This behaviour may be modified by usiag to always include it orsd to always leave it out.

http://www.debian.org/doc/debian-policy/

Chapter 6. Package uploads 26

If no original source is included in the upload, the original source tar-file usedpkg-source when
constructing thedsc file and diff to be uploadedhustbe byte-for-byte identical with the one already in

the archive. If there is some reason why this is not the case, the new version of the original source should be
uploaded, possibly by using thea flag.

6.4.2 Picking a distribution
TheDistribution field, which originates from the first line of tltebian/changelog file, indicates
which distribution the package is intended for.

There are three possible values for this field: ‘stable’, ‘unstable’, and ‘experimental’. Normally, packages
are uploaded intanstable

You should avoid combining ‘stable’ with others because of potential problems with library dependencies
(for your package and for the package built by the build daemons for other architecture). See ‘Uploading to
stablé on this page for more information on when and how to uploastatble

It never makes sense to combine #éxperimentadistribution with anything else.

Uploading to stable
Uploading tostablemeans that the package will be placed intopheposed-updates directory of the
Debian archive for further testing before it is actually includedtable

Extra care should be taken when uploadingttble Basically, a package should only be uploaded to stable
if one of the following happens:

e a security problem (e.g. a Debian security advisory)
e atruely critical functionality problem
¢ the package becomes uninstallable

e areleased architecture lacks the package

It is discouraged to change anything else in the package that isn’t important, because even trivial fixes can
cause bugs later on. Uploading new upstream versions to fix security problems is deprecated; applying the
specific patch from the new upstream version to the old one (“backporting” the patch) is the right thing to
do in most cases.

Packages uploaded siableneed to be compiled on systems runnsigble so that their dependencies
are limited to the libraries (and other packages) availablstable for example, a package uploaded to
stablethat depends on a library package that only exists in unstable will be rejected. Making changes to

Chapter 6. Package uploads 27

dependencies of other packages (by messing Riitlvides or shlibs files), possibly making those other
packages uninstallable, is strongly discouraged.

The Release Team (which can be reacheddabian-release@lists.debian.org>) will regu-
larly evaluate the uploads proposed-updatesnd decide if your package can be includedtable Please
be clear (and verbose, if necessary) in your changelog entries for uplostddble because otherwise the
package won't be considered for inclusion.

6.5 Uploading a package

6.5.1 Uploading toftp-master

To upload a package, you need a personal accoulffpemaster.debian.org , Which you should

have as an official maintainer. If you usep orrsync to transfer the files, place them intwg/ftp.debian.org/incoming/
if you use anonymous FTP to upload, place them iptd/UploadQueue/ . Please note that you should

transfer the changes file last. Otherwise, your upload may be rejected because the archive maintenance soft-
ware will parse the changes file and see that not all files have been uploaded. If you don’t want to bother with
transfering the changes file last, you can simply copy your files to a temporary directfipsroaster

and then move them torg/ftp.debian.org/incoming/

Note: Do not upload tdtp-master packages containing software that is patent-restricted by the United
States government, any cryptographic packages which belorwnimib or non-free If you can’t upload it

to ftp-master , then neither can you upload it to the overseas upload queudsank or erlangen

Uploads of such software should gonon-us (see ‘Uploading tanon-US (pandora)’ on the current
page). If you are not sure whether U.S. patent controls or cryptographic controls apply to your package,
post a message tadebian-devel@lists.debian.org> and ask.

You may also find the Debian packagkspload ordput useful when uploading packages. These handy
program are distributed with defaults for uploading fifa to ftp-master , chiark , anderlangen

It can also be configured to ussh orrsync . Seedupload(1) ,dupload(5) anddput(l) for more
information.

After uploading your package, you can check how the archive maintenance software will process it by
runningdinstall on your changes file:

dinstall -n foo.changes

6.5.2 Uploading tonon-US (pandora)

As discussed above, export controlled software should not be uploadgdnbaster . Instead, upload
the package toon-us.debian.org , placing the files iMorg/non-us.debian.org/incoming/

ftp-master.debian.org
non-us.debian.org

Chapter 6. Package uploads 28

(both ‘dupload ' on page53 and ‘dput ' on page53 can be used also, with the right invokation). By de-
fault, you can use the same account/password that work-anaster . If you use anonymous FTP to
upload, place the files intpub/UploadQueue/

You can check your upload the same way it's dondtprmaster , with:
dinstall -n foo.changes

Note that U.S. residents or citizens are subject to restrictions on export of cryptographic software. As of
this writing, U.S. citizens are allowed to export some cryptographic software, subject to notification rules by
the U.S. Department of Commerce. However, this restriction has been waived for software which is already
available outside the U.S. Therefore, any cryptographic software which belongsrimathsection of the
Debian archive and does not depend on any package outsidainfe.g., does not depend on anything in
non-US/maihcan be uploaded to ftp-master or its queues, described above.

Debian policy does not prevent upload to non-US by U.S. residents or citizens, but care should be taken in
doing so. It is recommended that developers take all necessary steps to ensure that they are not breaking
current US law by doing an upload to non-Ugluding consulting a lawyer

For packages imon-US/mainnon-US/contrib developers should at least follow the procedure outlined by
the US Governmenhftp://www.bxa.doc.gov/Encryption/PubAvailEncSourceCodeNofify.

html). Maintainers ohon-US/non-fre@ackages should further consult the rules on notification of export
(http://www.bxa.doc.gov/Encryption/) of non-free software.

This section is for information only and does not constitute legal advice. Again, it is strongly recommended
that U.S. citizens and residents consult a lawyer before doing uploads to non-US.

6.5.3 Uploads viachiark

If you have a slow network connection fip-master , there are alternatives. One is to upload files to
Incoming via a upload queue in Europe @hiark . For details connect téip:/ftp.chiark.
greenend.org.uk/pub/debian/private/project/README.how-to-upload

Note: Do not upload packages containing software that is export-controlled by the United States govern-
ment to the queue ochiark . Since this upload queue goesftp-master , the prescription found in
‘Uploading toftp-master ' on the preceding page applies here as well.

The prograndupload comes with support for uploading thiark ; please refer to the documentation
that comes with the program for details.

6.5.4 Uploads vieerlangen

Another upload queue is available in Germany: just upload the files via anonymous RpF/ftp.
uni-erlangen.de/pub/Linux/debian/UploadQueue/

http://www.bxa.doc.gov/Encryption/PubAvailEncSourceCodeNofify.html
http://www.bxa.doc.gov/Encryption/PubAvailEncSourceCodeNofify.html
http://www.bxa.doc.gov/Encryption/
ftp://ftp.chiark.greenend.org.uk/pub/debian/private/project/README.how-to-upload
ftp://ftp.chiark.greenend.org.uk/pub/debian/private/project/README.how-to-upload
ftp://ftp.uni-erlangen.de/pub/Linux/debian/UploadQueue/
ftp://ftp.uni-erlangen.de/pub/Linux/debian/UploadQueue/

Chapter 6. Package uploads 29

The upload must be a complete Debian upload, as you would put iftprytoaster ’s Incoming , i.e.,
a.changes files along with the other files mentioned in tlehanges . The queue daemon also checks
that the.changes s correctly PGP-signed by a Debian developer, so that no bogus files can find their
way toftp-master via this queue. Please also make sure thaMbamtainer field in the.changes
containsyour e-mail address. The address found there is used for all replies, jusfigsroaster

There’s no need to move your files into a second directory after the uploadchgmok . And, in any case,
you should get a mail reply from the queue daemon explaining what happened to your upload. Hopefully it
should have been movedfip-master , but in case of errors you're notified, too.

Note: Do not upload packages containing software that is export-controlled by the United States government
to the queue orerlangen . Since this upload queue goesftp-master , the prescription found in
‘Uploading toftp-master ' on page27 applies here as well.

The prograndupload comes with support for uploading &wlangen ; please refer to the documentation
that comes with the program for details.

6.5.5 Other Upload Queues

Another upload queue is available which is based in the US, and is a good backup when there are problems
reachingtp-master . You can upload files, just asarlangen ,toftp://samosa.debian.org/
pub/UploadQueue/

An upload queue is available in Japan: just upload the files via anonymous HijP/tmaster.
debian.or.jp/pub/Incoming/upload/

6.6 Announcing package uploads

When a package is uploaded, an announcement should be posted to one of the “debian-changes” lists. This
is now done automatically by the archive maintenance software when it runs (usually once a day). You just
need to use a recedpkg-dev (>=1.4.1.2). The mail generated by the archive maintenance software will
contain the PGP/GPG signezhanges files that you uploaded with your package. Previoudlpload

used to send those announcements, so please make sure that you configuchgpiaad not to send

those announcements (check its documentation and look for “dinstall_runs”).

If a package is released with tBéstribution: setto ‘stable’, the announcement is serttiebian-changes@
lists.debian.org> . Ifa package is released wibistribution: set to ‘unstable’, or ‘experimen-
tal’, the announcement will be postedtdebian-devel-changes@lists.debian.org> instead.

Thedupload program is clever enough to determine where the announcement should go, and will auto-
matically mail the announcement to the right list. Seééegload ' on page53.

ftp://samosa.debian.org/pub/UploadQueue/
ftp://samosa.debian.org/pub/UploadQueue/
ftp://master.debian.or.jp/pub/Incoming/upload/
ftp://master.debian.or.jp/pub/Incoming/upload/

Chapter 6. Package uploads 30

6.7 Notification that a new package has been installed

The Debian archive maintainers are responsible for handling package uploads. For the most part, uploads
are automatically handled on a daily basis by the archive maintenanceklatis, . Specifically, updates

to existing packages to the ‘unstable’ distribution are handled automatically. In other cases, notably new
packages, placing the uploaded package into the distribution is handled manually. When uploads are handled
manually, the change to the archive may take up to a month to occur. Please be patient.

In any case, you will receive email notification indicating that the package has added to the archive, which
also indicates which bugs will be closed by the upload. Please examine this notification carefully, checking
if any bugs you meant to close didn’t get triggered.

The installation notification also includes information on what section the package was inserted into. If there
is a disparity, you will receive a separate email notifying you of that. Read on below.

6.7.1 The override file

Thedebian/control file's Section andPriority fields do not actually specify where the file will

be placed in the archive, nor its priority. In order to retain the overall integrity of the archive, it is the archive
maintainers who have control over these fields. The values idgb@n/control file are actually just
hints.

The archive maintainers keep track of the canonical sections and priorities for packages\iertide file

If there is a disparity between tlowerride fileand the package’s fields as indicatedl@bian/control ,

then you will receive an email noting the divergence when the package is installed into the archive. You can
either correct youdebian/control file for your next upload, or else you may wish to make a change

in the override file

To alter the actual section that a package is put in, you need to first make sure tthelido®/'control

in your package is accurate. Next, send an erawierride-change@debian.org> or submit a bug
againstftp.debian.org requesting that the section or priority for your package be changed from the
old section or priority to the new one. Be sure to explain your reasoning.

For more information abouwtverride files seedpkg-scanpackages(8) , lusr/share/doc/debian
/bug-log-mailserver.txt , and/usr/share/doc/debian/bug-maint-info.txt

31

Chapter 7

Non-Maintainer Uploads (NMUS)

Under certain circumstances it is necessary for someone other than the official package maintainer to make
arelease of a package. This is called a non-maintainer upload, or NMU.

Debian porters, who compile packages for different architectures, do NMUs as part of their normal porting
activity (see ‘Porting and Being Ported’ on pagé. Another reason why NMUs are done is when a
Debian developers needs to fix another developers’ packages in order to address serious security problems
or crippling bugs, especially during the freeze, or when the package maintainer is unable to release a fix in
a timely fashion.

This chapter contains information providing guidelines for when and how NMUs should be done. A funda-
mental distinction is made between source and binary-only NMUs, which is explained in the next section.

7.1 Terminology

There are two new terms used throughout this section: “binary-only NMU” and “source NMU”. These terms
are used with specific technical meaning throughout this document. Both binary-only and source NMUs are
similar, since they involve an upload of a package by a developer who is not the official maintainer of that
package. That is why it's aon-maintainemupload.

A source NMU is an upload of a package by a developer who is not the official maintainer, for the purposes
of fixing a bug in the package. Source NMUs always involves changes to the source (even if it is just a
change tadebian/changelog). This can be either a change to the upstream source, or a change to
the Debian bits of the source. Note, however, that source NMUs may also include architecture-dependent
packages, as well as an updated Debian diff (or, more rarely, new upstream source as well).

A binary-only NMU is a recompilation and upload of a binary package for a given architecture. As such,
it is usually part of a porting effort. A binary-only NMU is a non-maintainer uploaded binary version of a
package, with no source changes required. There are many cases where porters must fix problems in the

Chapter 7. Non-Maintainer Uploads (NMUs) 32

source in order to get them to compile for their target architecture; that would be considered a source NMU
rather than a binary-only NMU. As you can see, we don't distinguish in terminology between porter NMUs
and non-porter NMUs.

Both classes of NMUs, source and binary-only, can be lumped by the term “NMU”. However, this often
leads to confusion, since most people think “source NMU” when they think “NMU". So it's best to be
careful. In this chapter, if we use the unqualified term “NMU”, we refer to any type of non-maintainer
upload NMUs, whether source and binary, or binary-only.

7.2 Who can do an NMU

Only official, registered Debian maintainers can do binary or source NMUs. An official maintainer is some-
one who has their key in the Debian key ring. Non-developers, however, are encouraged to download the
source package and start hacking on it to fix problems; however, rather than doing an NMU, they should
just submit worthwhile patches to the Bug Tracking System. Maintainers almost always appreciate quality
patches and bug reports.

7.3 When to do a source NMU

Guidelines for when to do a source NMU depend on the target distribution, i.e., stable, unstable, or experi-
mental. Porters have slightly different rules than non-porters, due to their unique circumstances (see ‘When
to do a source NMU if you are a porter’ on pag®.

When a security bug is detected, a fixed package should be uploaded as soon as possible. In this case, the
Debian security officers get in contact with the package maintainer to make sure a fixed package is uploaded
within a reasonable time (less than 48 hours). If the package maintainer cannot provide a fixed package
fast enough or if he/she cannot be reached in time, a security officer may upload a fixed package (i.e., do a
source NMU).

During the release cycle (see ‘Stable, testing, and unstable’ onl@ageMUs which fix serious or higher
severity bugs are encouraged and accepted. Even during this window, however, you should endeavor to
reach the current maintainer of the package; they might be just about to upload a fix for the problem. As
with any source NMU, the guidelines found in ‘How to do a source NMU’ on the facing page need to be
followed.

Bug fixes to unstable by non-maintainers are also acceptable, but only as a last resort or with permission.
Try the following steps first, and if they don’t work, it is probably OK to do an NMU:

e Make sure that the package bug is in the Debian Bug Tracking System (BTS). If not, submit a bug.

e Email the maintainer, and offer to help fix the package bug. Give it a few days.

Chapter 7. Non-Maintainer Uploads (NMUs) 33

e Go ahead and fix the bug, submitting a patch to the right bug in the BTS. Build the package and test
it as discussed in ‘Checking the package prior to upload’ on gdgese it locally.

e Wait a couple of weeks for a response.
e Email the maintainer, asking if it is OK to do an NMU.

e Double check that your patch doesn’t have any unexpected side effects. Make sure your patch is as
small and as non-disruptive as it can be.

e Wait another week for a response.

e Go ahead and do the source NMU, as described in ‘How to do a source NMU’ on this page.

7.4 How to do a source NMU

The following applies to porters insofar as they are playing the dual role of being both package bug-fixers
and package porters. If a porter has to change the Debian source archive, automatically their upload is a
source NMU and is subject to its rules. If a porter is simply uploading a recompiled binary package, the
rules are different; see ‘Guidelines for Porter Uploads’ on [&fye

First and foremost, it is critical that NMU patches to source should be as non-disruptive as possible. Do not
do housekeeping tasks, do not change the name of modules or files, do not move directories; in general, do
not fix things which are not broken. Keep the patch as small as possible. If things bother you aesthetically,
talk to the Debian maintainer, talk to the upstream maintainer, or submit a bug. However, aesthetic changes
mustnot be made in a non-maintainer upload.

7.4.1 Source NMU version numbering

Whenever you have made a change to a package, no matter how trivial, the version number needs to change.
This enables our packing system to function.

If you are doing a non-maintainer upload (NMU), you should add a new minor version numbedtbibe-
revisionpart of the version number (the portion after the last hyphen). This extra minor number will start at
‘1’. For example, consider the package ‘foo’, which is at version 1.1-3. In the archive, the source package
control file would befoo_1.1-3.dsc . The upstream version is ‘1.1’ and the Debian revision is ‘3’. The
next NMU would add a new minor number ‘.1’ to the Debian revision; the new source control file would be
foo_1.1-3.1.dsc

The Debian revision minor number is needed to avoid stealing one of the package maintainer’s version
numbers, which might disrupt their work. It also has the benefit of making it visually clear that a package
in the archive was not made by the official maintainer.

Chapter 7. Non-Maintainer Uploads (NMUs) 34

If there is nodebian-revisiorcomponent in the version number then one should be created, starting at ‘0.1".

If it is absolutely necessary for someone other than the usual maintainer to make a release based on a new
upstream version then the person making the release should start witbliagm-revisiorvalue ‘0.1'. The

usual maintainer of a package should start tHebian-revisiomumbering at ‘1’. Note that if you do this,

you'll have to invokedpkg-buildpackage with the-sa switch to force the build system to pick up the

new source package (normally it only looks for Debian revisions of ‘0’ or 1’ — it's not yet clever enough

to know about ‘0.1").

Remember, porters who are simply recompiling a package for a different architecture do not need to renum-
ber. Porters should use new version numbers if and only if they actually have to modify the source package
in some way, i.e., if they are doing a source NMU and not a binary NMU.

7.4.2 Source NMUs must have a new changelog entry

A non-maintainer doing a source NMU must create a changelog entry, describing which bugs are fixed by
the NMU, and generally why the NMU was required and what it fixed. The changelog entry will have the
non-maintainer’'s email address in the log entry and the NMU version number in it.

By convention, source NMU changelog entries start with the line

* Non-maintainer upload

7.4.3 Source NMUs and the Bug Tracking System

Maintainers other than the official package maintainer should make as few changes to the package as possi-
ble, and they should always send a patch as a unified contextlififf-) detailing their changes to the
Bug Tracking System.

What if you are simply recompiling the package? In this case, the process is different for porters than it is
for non-porters, as mentioned above. If you are not a porter and are doing an NMU that simply requires a
recompile (i.e., a new shared library is available to be linked against, a bug was fokelohalper), there

must still be a changelog entry; therefore, there will be a patch. If you are a porter, you are probably just
doing a binary-only NMU. (Note: this leaves out in the cold porters who have to do recompiles — chalk it
up as a weakness in how we maintain our archive.)

If the source NMU (non-maintainer upload) fixes some existing bugs, these bugs should befitaagtjad

the Bug Tracking System rather than closed. By convention, only the official package maintainer or the
original bug submitter are allowed to close bugs. Fortunately, Debian’s archive system recognizes NMUs
and thus marks the bugs fixed in the NMU appropriately if the person doing the NMU has listed all bugs
in the changelog with th€loses: bug# nnnnn syntax (see ‘When bugs are closed by new uploads’

on page46 for more information describing how to close bugs via the changelog). Tagging thdixeds
ensures that everyone knows that the bug was fixed in an NMU; however the bug is left open until the
changes in the NMU are incorporated officially into the package by the official package maintainer.

Chapter 7. Non-Maintainer Uploads (NMUs) 35

Also, after doing an NMU, you have to open a new bug and include a patch showing all the changes you
have made. The normal maintainer will either apply the patch or employ an alternate method of fixing the
problem. Sometimes bugs are fixed independently upstream, which is another good reason to back out an
NMU’s patch. If the maintainer decides not to apply the NMU’s patch but to release a new version, the
maintainer needs to ensure that the new upstream version really fixes each problem that was fixed in the
non-maintainer release.

In addition, the normal maintainer shouldlvaysretain the entry in the changelog file documenting the
non-maintainer upload.

7.4.4 Building source NMUs

Source NMU packages are built normally. Pick a distribution using the same rules as found in ‘Picking a
distribution’ on page6. Just as described in ‘Uploading a package’ on gage normal changes file, etc.,

will be built. In fact, all the prescriptions from ‘Package uploads’ on pagapply, including the need to
announce the NMU to the proper lists.

Make sure you damot change the value of the maintainer in tthebian/control file. Your name as
given in the NMU entry of thelebian/changelog file will be used for signing the changes file.

Chapter 7. Non-Maintainer Uploads (NMUs)

36

37

Chapter 8

Porting and Being Ported

Debian supports an ever-increasing number of architectures. Even if you are not a porter, and you don't use
any architecture but one, it is part of your duty as a maintainer to be aware of issues of portability. Therefore,
even if you are not a porter, you should read most of this chapter.

Porting is the act of building Debian packages for architectures that is different from the original architecture
of the package maintainer’s binary package. It is a unique and essential activity. In fact, porters do most of
the actual compiling of Debian packages. For instance, for a si@§&binary package, there must be a
recompile for each architecture, which is amounts to 12 more builds.

8.1 Being Kind to Porters

Porters have a difficult and unique task, since they are required to deal with a large volume of packages.
Ideally, every source package should build right out of the box. Unfortunately, this is often not the case.
This section contains a checklist of “gotchas” often committed by Debian maintainers — common problems
which often stymie porters, and make their jobs unnecessarily difficult.

The first and most important watchword is to respond quickly to bug or issues raised by porters. Please
treat porters with courtesy, as if they were in fact co-maintainers of your package (which in a way, they
are). Please be tolerant of succinct or even unclear bug reports, doing your best to hunt down whatever the
problem is.

By far, most of the problems encountered by porters are causpddikaging bug# the source packages.
Here is a checklist of things you should check or be aware of.

1. Make sure that youBuild-Depends andBuild-Depends-Indep settings indebian/control
are set properly. The best way to validate this is to useéb@otstrap package to create an unsta-
ble chroot environment. Within that chrooted environment, instalbtikel-essential package

Chapter 8. Porting and Being Ported 38

and any package dependancies mentioBuild-Depends and/orBuild-Depends-Indep
Finally, try building your package within that chrooted environment.

See the Debian Policy Manudit{p://www.debian.org/doc/debian-policy/) for in-
structions on setting build dependencies.

2. Don't set architecture to a value other than “all” or “any” unless you really mean it. In too many cases,
maintainers don’t follow the instructions in the Debian Policy Mantmip(//www.debian.
org/doc/debian-policy/). Setting your architecture to “i386” is usually incorrect.

3. Make sure your source package is correct. dp&ig-source -x package .dsc to make sure
your source package unpacks properly. Then, in there, try building your package from scratch with
dpkg-buildpackage

4. Make sure you don’t ship your source package withdekian/files or debian/substvars
files. They should be removed by the ‘clean’ targetlebian/rules

5. Make sure you don't rely on locally installed or hacked configurations or programs. For instance, you
should never be calling programs fmsr/local/bin or the like. Try not to rely on programs
be setup in a special way. Try building your package on another machine, even if it's the same
architecture.

6. Don't depend on the package you're building already being installed (a sub-case of the above issue).

7. Don't rely on the compiler being a certain version, if possible. If not, then make sure your build
dependencies reflect the restrictions, although you are probably asking for trouble, since different
architectures sometimes standardize on different compilers.

8. Make sure your debian/rules contains separate “binary-arch” and “binary-indep” targets, as the Debian
Packaging Manual requires. Make sure that both targets work independently, that is, that you can call
the target without having called the other before. To test this, try talplg-buildpackage -b

8.2 Guidelines for Porter Uploads

If the package builds out of the box for the architecture to be ported to, you are in luck and your job is easy.
This section applies to that case; it describes how to build and upload your binary-only NMU so that it is
properly installed into the archive. If you do have to patch the package in order to get it to compile for the
other architecture, you are actually doing a source NMU, so consult ‘How to do a source NMU’ o&%age
instead.

In a binary-only NMU, no real changes are being made to the source. You do not need to touch any of the
files in the source package. This incluadiebian/changelog

The way to invokedpkg-buildpackage is asdpkg-buildpackage -B -e porter-email . Of
course, seporter-emailto your email address. This will do a binary-only build of only the architecture-
dependant portions of the package, using the ‘binary-arch’ targkshian/rules

http://www.debian.org/doc/debian-policy/
http://www.debian.org/doc/debian-policy/
http://www.debian.org/doc/debian-policy/

Chapter 8. Porting and Being Ported 39

8.2.1 Recompilation Binary-Only NMU Versioning

Sometimes you need to recompile a package against other packages which have been updated, such as
libraries. You do have to bump the version number in this case, so that the version comparison system can
function properly. Even so, these are considered binary-only NMUs — there is no need in this case to trigger
all other architectures to consider themselves out of date or requiring recompilation.

Such recompilations require special “magic” version numbering, so that the archive maintenance tools rec-
ognize that, even though there is a new Debian version, there is no corresponding source update. If you get
this wrong, the archive maintainers will reject your upload (due to lack of corresponding source code).

The “magic” for a recompilation-only NMU is triggered by using the third-level number on the Debian part

of the version. For instance, if the latest version you are recompiling against was version “2.9-3", your NMU
should carry a version of “2.9-3.0.1". If the latest version was “3.4-2.1", your NMU should have a version

number of “3.4-2.1.1".

8.2.2 When to do a source NMU if you are a porter

Porters doing a source NMU generally follow the guidelines found in ‘Non-Maintainer Uploads (NMUS)’
on page3l, just like non-porters. However, it is expected that the wait cycle for a porter's source NMU

is smaller than for a non-porter, since porters have to cope with a large quantity of packages. Again, the
situation varies depending on the distribution they are uploading to.

However, if you are a porter doing an NMU for ‘unstable’, the above guidelines for porting should be

followed, with two variations. Firstly, the acceptable waiting period — the time between when the bug is
submitted to the BTS and when it is OK to do an NMU — is seven days for porters working on the unstable
distribution. This period can be shortened if the problem is critical and imposes hardship on the porting
effort, at the discretion of the porter group. (Remember, none of this is Policy, just mutually agreed upon
guidelines.)

Secondly, porters doing source NMUs should make sure that the bug they submit to the BTS should be

of severity ‘serious’ or greater. This ensures that a single source package can be used to compile every
supported Debian architecture by release time. It is very important that we have one version of the binary

and source package for all architecture in order to comply with many licenses.

Porters should try to avoid patches which simply kludge around bugs in the current version of the compile
environment, kernel, or libc. Sometimes such kludges can't be helped. If you have to kludge around
compilers bugs and the like, make sure yifdef your work properly; also, document your kludge so
that people know to remove it once the external problems have been fixed.

Porters may also have an unofficial location where they can put the results of their work during the waiting
period. This helps others running the port have the benefit of the porter's work, even during the waiting
period. Of course, such locations have no official blessing or status, so buyer, beware.

Chapter 8. Porting and Being Ported 40

8.3 Tools for Porters

There are several tools available for the porting effort. This section contains a brief introduction to these
tools; see the package documentation or references for full information.

8.3.1 quinn-diff

quinn-diff is used to locate the differences from one architecture to another. For instance, it could tell
you which packages need to be ported for architectut®sed on architectudé

8.3.2 buildd

Thebuildd system is used as a distributed, client-server build distribution system. It is usually used in
conjunction withauto-builders which are “slave” hosts which simply check out and attempt to auto-build
packages which need to be ported. There is also an email interface to the system, which allows porters to
“check out” a source package (usually one which cannot yet be autobuilt) and work on it.

buildd is not yet available as a package; however, most porting efforts are either using it currently or
planning to use it in the near future. It collects a number of as yet unpackaged components which are
currently very useful and in use continually, suchaadrea , shuild andwanna-build

Some of the data produced byildd which is generally useful to porters is available on the wétitat
//buildd.debian.org/ . This data includes nightly updated information framdrea (source de-
pendencies) anguinn-diff (packages needing recompilation).

We are very excited about this system, since it potentially has so many uses. Independent development
groups can use the system for different sub-flavors of Debian, which may or may not really be of general
interest (for instance, a flavor of Debian built with gcc bounds checking). It will also enable Debian to
recompile entire distributions quickly.

8.3.3 dpkg-cross

dpkg-cross s a tool for installing libraries and headers for cross-compiling in a way simildpkg .
Furthermore, the functionality afpkg-buildpackage anddpkg-shlibdeps is enhanced to support
cross-compiling.

http://buildd.debian.org/
http://buildd.debian.org/

41

Chapter 9

Moving, Removing, Renaming, Adopting,
and Orphaning Packages

Some archive manipulation operation are not automated in the Debian upload process. These procedures
should be manually followed by maintainers. This chapter gives guidelines in what to do in these cases.

9.1 Moving packages

Sometimes a package will change its section. For instance, a package from the ‘non-free’ section might be
GPLd in a later version, in which case, the package should be moved to ‘main’ or ‘contrib’.

If you need to change the section for one of your packages, change the package control information to
place the package in the desired section, and re-upload the package (see the Debian Policyhifanual (

/Iwww.debian.org/doc/debian-policy/) for details). Carefully examine the installation log
sent to you when the package is installed into the archive. If for some reason the old location of the package
remains, file a bug againfip.debian.org asking that the old location be removed. Give details on

what you did, since it might be a bug in the archive maintenance software.

If, on the other hand, you need to change shbsectiorof one of your packages (e.g., “devel”, “admin”),

the procedure is slightly different. Correct the subsection as found in the control file of the package, and
reupload that. Also, you'll need to get the override file updated, as described in ‘The override file’ on
page30.

1See the Debian Policy Manudlt(p://www.debian.org/doc/debian-policy/) for guidelines on what section a
package belongs in.

http://www.debian.org/doc/debian-policy/
http://www.debian.org/doc/debian-policy/
http://www.debian.org/doc/debian-policy/

Chapter 9. Moving, Removing, Renaming, Adopting, and Orphaning Packages 42

9.2 Removing packages

If for some reason you want to completely remove a package (say, if it is an old compatibility library which is
not longer required), you need to file a bug agaftpstiebian.org asking that the package be removed.
Make sure you indicate which distribution the package should be removed from.

If in doubt concerning whether a package is disposable, exugbian-devel@lists.debian.

org> asking for opinions. Also of interest is ttapt-cache program from theapt package. When
invoked asapt-cache showpkg package , the program will show details fqrackage including re-
verse depends.

9.2.1 Removing packages fronincoming

Inthe past, it was possible to remove packages frammoaming . With the introduction of the New Incoming
system this is no longer possible. Instead, you have to upload a new revision of your package with a higher
version as the package you want to replace. Both versions will be installed in the archive but only the higher
version will actually be available innstablesince the previous version will immediately be replaced by the
higher. However, if you do proper testing of your packages, the need to replace a package should not occur
too often anyway.

9.3 Replacing or renaming packages

Sometimes you made a mistake naming the package and you need to rename it. In this case, you need to
follow a two-step process. First, set yalgbian/control file to replace and conflict with the obsolete

name of the package (see the Debian Policy Mariig) (/www.debian.org/doc/debian-policy/)

for details). Once you've uploaded that package, and the package has moved into the archive, file a bug
againstftp.debian.org asking to remove the package with the obsolete name.

9.4 Orphaning a package

If you can no longer maintain a package, you need to inform the others about that, and see that the package is
marked as orphaned. you should set the package maintaibebtan QA Group <packages@qa.debian.org >
and submit a bug report against the pseudo packaxgp. The bug report should be titlgd: package

-- short description indicating that the package is now orphaned. The severity of the bug should

be settmormal If you feel it's necessary, send a copy<tdebian-devel@lists.debian.org> by

putting the address in the X-Debbugs-CC: header of the message (no, don’'t use CC:, because that way the
message’s subject won't indicate the bug number).

http://www.debian.org/doc/debian-policy/

Chapter 9. Moving, Removing, Renaming, Adopting, and Orphaning Packages 43

If the package is especially crucial to Debian, you should instead submit a bug agapystand title
it RFA: package -- short description and set its severity tomportant Definitely copy the
message to debian-devel in this case, as described above.

Read instructions on the WNPP web pagetp(//www.debian.org/devel/wnpp/) for more
information.

9.5 Adopting a package

A list of packages in need of a new maintainer is available at in the Work-Needing and Prospective Packages
list (WNPP) (ttp://www.debian.org/devel/wnpp/). If you wish to take over maintenance of

any of the packages listed in the WNPP, please take a look at the aforementioned page for information and
procedures.

It is not OK to simply take over a package that you feel is neglected — that would be package hijacking.
You can, of course, contact the current maintainer and ask them if you may take over the package. However,
without their assent, you may not take over the package. Even if they ignore you, that is still not grounds
to take over a package. If you really feel that a maintainer has gone AWOL (absent without leave), post a
guery to<debian-private @lists.debian.org>

If you take over an old package, you probably want to be listed as the package’s official maintainer in the bug
system. This will happen automatically once you upload a new version with an updatethiner:

field, although it can take a few hours after the upload is done. If you do not expect to upload a new version
for a while, send an email teoverride-change@debian.org> so that bug reports will go to you

right away.

http://www.debian.org/devel/wnpp/
http://www.debian.org/devel/wnpp/

Chapter 9. Moving, Removing, Renaming, Adopting, and Orphaning Packages

44

45

Chapter 10

Handling Bugs

10.1 Monitoring bugs

If you want to be a good maintainer, you should periodically check the Debian bug tracking system (BTS)
(http://www.debian.org/Bugs/) for your packages. The BTS contains all the open bugs against
your packages.

Maintainers interact with the BTS via email addressesuajs.debian.org . Documentation on avail-
able commands can be foundhétp://www.debian.org/Bugs/ , or, if you have installed theéoc-debian
package, you can look at the local filessr/share/doc/debian/bug-*

Some find it useful to get periodic reports on open bugs. You can add a cron job such as the following if you
want to get a weekly email outlining all the open bugs against your packages:

ask for weekly reports of bugs in my packages

0 17 * * fri echo "index maint address " | mail request@bugs.debian.org

Replaceaddresswith you official Debian maintainer address.

10.2 Submitting Bugs

Often as a package maintainer, you find bugs in other packages or else have bugs reported to your packages
which need to be reassigned. The BTS instructiomg (//www.debian.org/Bugs/server-control.
htm!) can tell you how to do this.

We encourage you to file bugs when there are problems. Try to submit the bug from a normal user account
at which you are likely to receive mail. Do not submit bugs as root.

http://www.debian.org/Bugs/
http://www.debian.org/Bugs/
http://www.debian.org/Bugs/server-control.html
http://www.debian.org/Bugs/server-control.html

Chapter 10. Handling Bugs 46

Make sure the bug is not already filed against a package. Try to do a good job reporting a bug and redirecting
it to the proper location. For extra credit, you can go through other packages, merging bugs which are
reported more than once, or setting bug severities to ‘fixed’ when they have already been fixed. Note that
when you are neither the bug submitter nor the package maintainer, you should not actually close the bug
(unless you secure permission from the maintainer).

10.3 Responding to Bugs

Make sure that any discussions you have about bugs are sent both to the original submitter of the bug, and
the bug itself (e.g5123@bugs.debian.org>).

You shouldneverclose bugs via the bug server ‘close’ command senrtdontrol@bugs.debian.
org> . If you do so, the original submitter will not receive any feedback on why the bug was closed.

10.4 When bugs are closed by new uploads

If you fix a bug in your packages, it is your responsibility as the package maintainer to close the bug when

it has been fixed. However, you should not close the bug until the package which fixes the bug has been
accepted into the Debian archive. Therefore, once you get notification that your updated package has been
installed into the archive, you can and should close the bug in the BTS.

If you are using a new version dpkg-dev and you do your changelog entry properly, the archive main-
tenance software will close the bugs automatically. All you have to do is follow a certain syntax in your
debian/changelog file:

acme-cannon (3.1415) unstable; urgency=low

* Frobbed with options (closes: Bug#98339)

* Added safety to prevent operator dismemberment, closes: bug#98765,
bug#98713, #98714.

* Added manpage. Closes: #98725.

Technically speaking, the following Perl regular expression is what is used:
Icloses: \s*(?:bug)? \#\s* \d+(?:, \s*(?:bug)? \#\s* \d+)*/ig

The author prefers thigloses: Bug# XXX) syntax, since it stands out from the rest of the changelog
entries.

If you want to close bugs the old fashioned, manual way, it is usually sufficient to madhbhages file
to <XXX-done@bugs.debian.org> , whereXXXis your bug number.

Chapter 10. Handling Bugs 47

10.5 Lintian reports

You should periodically get the nelmtian from ‘unstable’ and check over all your packages. Alterna-
tively you can check for your maintainer email address at the online lintian reggut/(lintian.

debian.org/). That report, which is updated automatically, contdimigan reports against the latest
version of the distribution (usually from 'unstable’) using the latiegtan

10.6 Reporting lots of bugs at once

Reporting a great number of bugs for the same problem on a great number of different packages — i.e.,
more than 10 — is a deprecated practice. Take all possible steps to avoid submitting bulk bugs at all. For
instance, if checking for the problem can be automated, add a new chiokan so that an error or
warning is emitted.

If you report more than 10 bugs on the same topic at once, it is recommended that you send a message to
<debian-devel@lists.debian.org> describing your intention before submitting the report. This

will allow other developers to verify that the bug is a real problem. In addition, it will help prevent a situation

in which several maintainers start filing the same bug report simultaneously.

Note that when sending lots of bugs on the same subject, you should send the bug repwirtonly @
bugs.debian.org> so that the bug report is not forwarded to the bug distribution mailing list.

http://lintian.debian.org/
http://lintian.debian.org/

Chapter 10. Handling Bugs

48

49

Chapter 11

Interaction with Prospective Developers

This chapter describes procedures that existing Debian developers should follow when it comes to dealing
with wannabe developers.

11.1 Sponsoring packages

Sponsoring a package means uploading a package for a maintainer who is not able to do it on their own, a
new maintainer applicant. Sponsoring a package also means accepting responsibility for it.

New maintainers usually have certain difficulties creating Debian packages — this is quite understandable.
That is why the sponsor is there, to check the package and verify that it is good enough for inclusion in

Debian. (Note that if the sponsored package is new, the FTP admins will also have to inspect it before
letting itin.)

Sponsoring merely by signing the upload or just recompilinggiinitely not recommended You need to

build the source package just like you would build a package of your own. Remember that it doesn’t matter
that you left the prospective developer's name both in the changelog and the control file, the upload can still
be traced to you.

If you are an application manager for a prospective developer, you can also be their sponsor. That way you
can also verify the how the applicant is handling the ‘Tasks and Skills’ part of their application.

11.2 Advocating new developers

See the page about advocating a prospective develoger/{www.debian.org/devel/join/
nm-advocate) at the Debian web site.

http://www.debian.org/devel/join/nm-advocate
http://www.debian.org/devel/join/nm-advocate

Chapter 11. Interaction with Prospective Developers

11.3 Handling new maintainer applications

Please see Checklist for Application Managéisy(;//www.debian.org/devel/join/nm-amchecklist
at the Debian web site.

50

http://www.debian.org/devel/join/nm-amchecklist

51

Chapter 12

Overview of Debian Maintainer Tools

This section contains a rough overview of the tools available to maintainers. The following is by no means
complete or definitive, but just a guide to some of the more popular tools.

Debian maintainer tools are meant to help convenience developers and free their time for critical tasks. As
Larry Wall says, there’s more than one way to do it.

Some people prefer to use high-level package maintenance tools and some do not. Debian is officially ag-
nostic on this issue; any tool which gets the job done is fine. Therefore, this section is not meant to stipulate
to anyone which tools they should use or how they should go about with their duties of maintainership. Nor
is it meant to endorse any particular tool to the exclusion of a competing tool.

Most of the descriptions of these packages come from the actual package descriptions themselves. Further
information can be found in the package documentation itself. You can also see more info with the command
apt-cache show package_name .

12.1 dpkg-dev

dpkg-dev contains the tools (includindpkg-source) required to unpack, build and upload Debian
source packages. These utilities contain the fundamental, low-level functionality required to create and
manipulated packages; as such, they are required for any Debian maintainer.

12.2 lintian

Lintian dissects Debian packages and reports bugs and policy violations. It contains automated checks for
many aspects of Debian policy as well as some checks for common errors. ThdioSarof has already
been discussed in ‘Checking the package prior to upload’ on péagad ‘Lintian reports’ on pagé?’.

Chapter 12. Overview of Debian Maintainer Tools 52

12.3 debconf

debconf provides a consistent interface to configuring packages interactively. It is user interface indepen-
dant, allowing end-users to configure packages with a text-only interface, an HTML interface, or a dialog
interface. New interfaces can be added modularly.

You can find documentation for this package in tebconf-doc package.

Many feel that this system should be used for all packages requiring interactive configudabeonf is
not currently required by Debian Policy, however, that may change in the future.

12.4 debhelper

debhelper s a collection of programs that can be used@bian/rules to automate common tasks
related to building binary Debian packages. Programs are included to install various files into your package,
compress files, fix file permissions, integrate your package with the Debian menu system.

Unlike some approachedgbhelper is broken into several small, granular commands which act in a
consistent manner. As such, it allows a greater granularity of control than some of the other “debian/rules
tools”.

There are a number of littldebhelper add-on packages, too transient to document. You can see the list
of most of them by doingpt-cache search “dh-

12.5 debmake

debmake, a pre-cursor talebhelper , is a less granuladebian/rules assistant. It includes two
main programsdeb-make , which can be used to help a maintainer convert a regular (non-Debian) source
archive into a Debian source package; aethstd , which incorporates in one big shot the same sort of
automated functions that one findsdebhelper

The consensus is thdebmake is now deprecated in favor alebhelper . However, it's not a bug to use
debmake.

12.6 yada

yada is another packaging helper tool. It usesl@bian/packages file to auto-generatéebian
/rules other necessary files in thiebian/ subdirectory.

Note thatyada is called “essentially unmaintained” by it's own maintainer, Charles Briscoe-Smith. As
such, it can be considered deprecated.

Chapter 12. Overview of Debian Maintainer Tools 53

12.7 equivs

equivs is another package for making packages. It is often suggested for local use if you need to make a
package simply to fulfill dependencies. It is also sometimes used when making “meta-packages”, which are
packages whose only purpose is to depend on other packages.

12.8 cvs-buildpackage

cvs-buildpackage provides the capability to inject or import Debian source packages into a CVS
repository, build a Debian package from the CVS repository, and helps in integrating upstream changes into
the repository.

These utilities provide an infrastructure to facilitate the use of CVS by Debian maintainers. This allows one
to keep separate CVS branches of a packagstiiile unstable and possiblyexperimentabistributions,
along with the other benefits of a version control system.

12.9 dupload

dupload is a package and a script to automagically upload Debian packages to the Debian archive, to log
the upload, and to send mail about the upload of a package. You can configure it for new upload locations
or methods.

12.10 dput

Thedput package and script does much the same thindugsoad , but in a different way. It has some
features ovedupload , such as the ability to check the GnuPG signature and checksums before uploading,
and the possibility of runnindinstall in dry-run mode after the upload.

12.11 fakeroot

fakeroot simulates root privileges. This enables you to build packages without being root (packages
usually want to install files with root ownership). If you hdeg&eroot installed, you can build packages
as a userdpkg-buildpackage -rfakeroot

Chapter 12. Overview of Debian Maintainer Tools 54

12.12 debootstrap

Thedebootstrap package and script allows you to “bootstrap” a Debian base system into any part of
your filesystem. By “base system”, we mean the bare minimum of packages required to operate and install
the rest of the system.

Having a system link this can be useful in many ways. For instance, yodhzant into it if you want to
test your build depends. Or, you can test how your package behaves when installed into a bare base system.

12.13 devscripts

devscripts is a package containing a few wrappers and tools which you may find helpful for maintain-
ing your Debian packages. Example scripts incldelbechange anddch, which manipulate youlebian
/changelog file from the command-line, arakebuild , which is a wrapper arourgpkg-buildpackage

12.14 dpkg-dev-el

dpkg-dev-el is an Emacs lisp package which provides assistance when editing some of the files in the
debian directory of your package. For instance, when editielpian/changelog , there are handy
functions for finalizing a version and listing the package’s current bugs.

12.15 debget

debget is a package containing a convenient script which can be helpful in downloading files from the
Debian archive. You can use it to download source packages, for instance (altqutggt source
package does pretty much the same thing).

	Scope of This Document
	Applying to Become a Maintainer
	Getting started
	Registering as a Debian developer
	Debian Mentors

	Debian Developer's Duties
	Maintaining Your Debian Information
	Maintaining Your Public Key
	Going On Vacation Gracefully
	Coordination With Upstream Developers
	Managing Release Critical Bugs
	Quality Assurance Effort
	Dealing with unreachable maintainers
	Retiring Gracefully

	Mailing Lists, Servers, and Other Machines
	Mailing lists
	Debian servers
	The master server
	The ftp-master server
	The WWW server
	The CVS server
	Mirrors of Debian servers

	Other Debian Machines

	The Debian Archive
	Overview
	Sections
	Architectures
	Subsections
	Packages
	Distribution directories
	Stable, testing, and unstable
	Experimental

	Release code names

	Package uploads
	New packages
	Adding an entry to =1spdebian /changelog
	Checking the package prior to upload
	Generating the changes file
	The original source tarball
	Picking a distribution

	Uploading a package
	Uploading to ftp-master
	Uploading to non-US (pandora)
	Uploads via chiark
	Uploads via erlangen
	Other Upload Queues

	Announcing package uploads
	Notification that a new package has been installed
	The override file

	Non-Maintainer Uploads (NMUs)
	Terminology
	Who can do an NMU
	When to do a source NMU
	How to do a source NMU
	Source NMU version numbering
	Source NMUs must have a new changelog entry
	Source NMUs and the Bug Tracking System
	Building source NMUs

	Porting and Being Ported
	Being Kind to Porters
	Guidelines for Porter Uploads
	Recompilation Binary-Only NMU Versioning
	When to do a source NMU if you are a porter

	Tools for Porters
	quinn-diff
	buildd
	dpkg-cross

	Moving, Removing, Renaming, Adopting, and Orphaning Packages
	Moving packages
	Removing packages
	Removing packages from Incoming

	Replacing or renaming packages
	Orphaning a package
	Adopting a package

	Handling Bugs
	Monitoring bugs
	Submitting Bugs
	Responding to Bugs
	When bugs are closed by new uploads
	Lintian reports
	Reporting lots of bugs at once

	Interaction with Prospective Developers
	Sponsoring packages
	Advocating new developers
	Handling new maintainer applications

	Overview of Debian Maintainer Tools
	dpkg-dev
	lintian
	debconf
	debhelper
	debmake
	yada
	equivs
	cvs-buildpackage
	dupload
	dput
	fakeroot
	debootstrap
	devscripts
	dpkg-dev-el
	debget

