QMTest: User’'s Guide and Reference

CodeSourcery, LLC

QMTest: User’s Guide and Reference
by CodeSourcery, LLC
Copyright © 2002 by CodeSourcery LLC

|. REQUIREMENTS ON BOTH UNMODIFIED AND MODIFIED VERSIONS

Open Publication work may be reproduced and distributed in whole or in part, in any medium physical or electronic,
provided that the terms of this license are adhered to, and that this license or an incorporation of it by reference is displayed
in the reproduction.

Proper form for incorporation of this license by reference is as follows:
Copyright © 2000, 2001 by CodeSourcery LLC. This material may be distributed only subject to the terms and conditions

set forth in the Software Carpentry Open Publication License, which is available at
http://sc-archive.codesourcery.com/openpub-license.html .

Commercial redistribution of material covered by this license is permitted.

Any publication in standard (paper) book form shall require the citation of the original author and (where applicable)
publisher.

Il. COPYRIGHT

The copyright to each Open Publication is owned by its author(s) or designee(s).
Ill. SCOPE OF LICENSE

The license terms below apply to all Open Publication works.

AGGREGATION. Mere aggregation of Open Publication works or a portion of an Open Publication work with other works
or programs on the same media shall not cause this license to apply to those other works. The aggregate work shall contain a
notice specifying the inclusion of the Open Publication material and appropriate copyright notice.

SEVERABILITY. If any part of this license is found to be unenforceable in any jurisdiction, the remaining portions of the
license remain in force.

NO WARRANTY. Open Publication works are licensed and provided ‘as is’ without warranty of any kind, express or
implied, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose or a
warranty of non-infringement.

IV. REQUIREMENTS ON MODIFIED WORKS

All modified versions of documents covered by this license, including translations, anthologies, compilations and partial
documents, must meet the following requirements:

1. The modified version must be labeled as such.

2. The person making the modifications must be identified and the modifications dated.

3. Acknowledgement of the original author and publisher if applicable must be retained according to normal academic
citation practices.

4. The location of the original unmodified document must be identified.

5. The original author’s (or authors’) name(s) may not be used to assert or imply endorsement of the resulting document
without the original author’s (or authors’) permission.

V. GOOD-PRACTICE RECOMMENDATIONS

In addition to the requirements of this license, it is requested from and strongly recommended of redistributors that:

1.1f you are distributing Open Publication works on hardcopy or CD-ROM, you provide email notification to the authors
of your intent to redistribute at least thirty days before your manuscript or media freeze, to give the authors time to
provide updated documents. This natification should describe modifications, if any, made to the document.

2. All substantive maodifications (including deletions) be either clearly marked up in the document or else described in an
attachment to the document.

Finally, while it is not mandatory under this license, it is considered good form to offer a free copy of any hardcopy and
CD-ROM expression of an Open Publication-licensed work to its author(s).

Revision History

Revision 1.0
Initial revision.

Table of Contents

I o o 11 ox] o USSP PP ST PURTU PP PTSTSPRN 7
2. Getting Started With QMTEST ..ot et b e b b e e ene e 9
2200 T 11 o 0 o T 9
2.2. Starting the Graphical INTErfaCE.........ccccvvi e 10
2.3, RUNNING TOSES....uiiiiieteeeeetesteseste e ettt ae e sesresteseesaesse e e e s sesaesbestesaeneeseesesseseeseensenennen 10
P ST 1 o I T 0 1=Tod v= L1 [4L 11
2.5, EXAMINING TOSES....uiitiiieeeeetiriisestesteeeeseste s et e e e se s aeseeseensene e e ssessestestesaeneeseesesseseessensenennes 11
2.6. Modifying and CreatiNng TESLS......ccv ittt st s 12
2.7. Using the Command-Line INterface..........coviiriiiniiiereeeese e 13
2.8. Expectations on the Command LINE.........cccoviiiiiniiieree e 15
2.9. REVIEWING RESUILS. ..ottt bbb e 16
BT U]V T 1Y = SRS 19
3.1, QMTESE CONCEPLS. ...ttt sttt r e e e ae et sr e r e ne e 19
TNt Ot O 1 =1 T USSP PSP 19
TN i (=TT 0 LU] (o] = USSP PSP 20
TR G T O 0] 1=« S TSP U S PPRRP 20
.14, TESE RESUILS.....ceeeeet ettt et bt e e s b b e e see e eneas 21
.14, 1. OULCOMES.....coiitiiuieteeieeee sttt sttt bt e ettt e s he et s bt e e e sbe e e seesaeenbesbeennenas 21

I I AN o g o] = 1 o] 1= USRS 21

TN I T =2y o T U1 (= USSP 22
3.1.5.1. IMPICit TEST SUILES....c.eieieiieeterie e e 22

3.1.6. TESE DAADASE.cueiiieiieie ettt et b ettt b b e e e 23
TN R - o] £ PR PRROPRRTRN 23

G {0 1 o 1T o T =S O 24
3.2.1. Ordering and DePENUENCIES.cceeierieeeere e se sttt nas 24
3.2.2. TRE CONEXL. ..ttt ettt st b e ettt s b b e e e eneas 25

3.3. TeSt DAtabase CONLENLS.c.iiiieereeie ettt b e see e e b b ne e 25
G B 1 V0] ST o 1 I T TR 26
R I o [1 0 (= O PRPOPRRPRPRN 26
B I OV T o] 1= RS 26

G 2 ©] o [o =R 26
3.4.2.qmtest Create-tdbh.........ccov e e 27
4.2, 1. SUMMIAIY. ..ttt r et r b sr e e e e s nbesr e sr s e s 27

Bi4.2.2. SYNOPSIS....ieetireetirerteirtetrie sttt sttt sttt ettt se et se bt et st be et e b e 27

3.4.2.3. DESCIIPLON.ceitiictieteerie ettt st sttt 27
e Je 401121 o [PR STUTST PSPPSRI 28
4.3 L. SUMMIAIY. ..ttt r b e e resn e nr e n e 28

G T TV o] o 1] 1R 28

3.4.3.3. DESCIIPLON. ...ttt sttt b e 28

B4 A GMEESE FUN Lottt se e bbbt r e s et r b nenr e eneas 29
4.4 L. SUMMIAIY. ..ttt sr et r b e ne e e se s b snesn s e s 30

B4 4.2, SYNOPSIS....ieetirietireiterieteerte sttt ettt ettt b et b et b e e b et b et b e 30

3.4.4.3. DESCIIPLON.ciitiiiteeeteerte ettt st st eb et 30
3.4.5.0MEESE SUMIMANIZE......eiitiiitiieieee ettt b et s b e sb et b e 32
4.5, 1. SUMMAIY. ..ttt r e e e sr e sr e n e 32

Bi4.5.2. SYNOPSIS....ceetireetireitiieteerte ettt ettt et b et b et bbbt e b et b et re e 32

3.4.5.3. DESCIIPLON. ...ttt bbb eb et b et 33

3.4.6. EnvironmMent Variables. ..ottt e 33

3.5. Test and RESOUICE CIASSES. ...uiuariririerie ettt ettt seesee st e e e e nesaesaesbesbeseeneens 34
.51, TESE ClASSES. ...ttt sttt b et e e s e sae st e et e e e neebesbeseeseeneeneas 34
3.5.1.1.commaNnd.EXECTESE .viivviiiieiiieitiesiee e eesteesres st e s e saae s e b saaesneenreesanas 34
3.5.1.2.command.ShellCommandTESt cccucuirriiiiieriei e 35
3.5.1.3.command.ShellSCrPtTESt ioiiecie e 36

I ST =T A = 0 =] £ TR OS PRSP 37
3.6.1. Target SPECIfICALIQN........ciirieeeerire bbb s e 37

T T = o = 1= TR 37
T ST TR =T o = A O = S = O 38
3.6.3.1. Thread TarQel.......cccciveeeie et nas 38

3.6.3.2. Remote Shell TArgeL.....ccoooieiiiieiceee e 39

3.7. Writing Test and RESOUICE CIaSSES......ccccoviieiiereeiine ettt scee e s ee e eeste e ae e enne e 40
3.7. 1. WIItING TESE CIASSES....ccuiiteiieeetieiite st ste et ettt st sttt e e resrestesnennenens 40
3.7.1.1. Thearguments AtHDULEcccciiieiriceccee e 40

3.7.1.2. TRERUN FUNCLION.ciitiirieierieie ettt st 41

3.7.1.3. USING the CONEXL.....oiveeeeeece et 41

3.7.1.4. Creating RESULLS.......ccccoeeee e 41

3.7.2. Writing RESOUICE ClAaSSES......ccceiviviirirriereeeeesteseseeseseses e see e eseeessessesseseeseeeenens 42
3.7.3. Specifying a Test or RESOUrce Class.........ccoevrriinrieireiree e 43

3.8. Writing & Database Class.........ccviiriiiriiiriie sttt st 43
4. The QM ConfIQUIAtiON FlEo.ci it 45
4.1. Configuration Variables.........c.ciiiiere et 45

Chapter 1. Introduction

QMTest is a testing tool. You can use QMTest to test a software application, such as a database,
compiler, or web browser. You can even QMTest to test a physical system (like a valve or thermometer)
if you have a way of connecting it to your computer.

Code that has not been tested adequately generally does not work. Yet, many applications are deployed
without adequate testing, often with catastrophic results. It is much more costly to find defects at the end
of the release cycle than at the beginning. By making it easy to develop tests, and execute those tests to
validate the application, QMTest makes it easy to find problems easier, rather than later.

QMTest can be extended to handle any application domain and any test format. QMTest works with
existing testsuites, no matter how they work or how they are stored. QMTest's open and pluggable
architecture supports a wide variety of applications.

QMTest features both an intuitive graphical user interface and a conventional command-line interface.
QMTest can run tests in serial, in parallel on a single machine, or across a farm of possibly
heterogeneous machines.

CodeSourcery provides support for QMTest. CodeSourcery can help you install, integrate, and customize
QMTest. For more information, visit the QMTest web site (http://www.gmtest.com).

Chapter 1. Introduction

Chapter 2. Getting Started with QMTest

QMTest is an general-purpose, cross-platform software testing tool. QMTest can be used to test
compilers, databases, graphical user interfaces, or embedded systems. QMTest provides a convenient
graphical user interface for creating, managing, and executing tests, provides support for parallel test
execution, and can be extended in a variety of ways.

This chapter will show you how to use QMTest by example. You will learn how to use QMTest to create
tests, run tests, and examine the results.

2.1. Setting Up

A test database is a directory that QMTest uses to store tests. If you want to create a new, empty test
database from scratch, you use ¢matest create-tdbcommand, but for this tutorial, you should use the
sample test database provided with QMTest. Since you'll modify the test database later in the tutorial,
start by making a copy of it. Copy the entire test database directory tree to another location. If you've
installed QMTest in the default location you can make a copy of the sample database by running this
command on a UNIX system:

> cp -r lusr/local/share/qm/tutorial/test/tdb tdb

On a Windows system, use this command at a BP®mpt:

> xcopy c:\progra~1\gm\share\gm\tutorial\test\tdb tdb\ /s

If you installed QMTest in another directory, substitute that directoryusvlocal or
c:\progra~1\gm in the commands above.

Then, enter the new directory you have created. On both UNIX and Windows systems, you can do this
with this command:

> cd tdb

Make sure that QMTest is in your PATH so that the operating system can find it. On UNIX, you can use
this command:

> PATH=/usr/local/bin:${PATH}; export PATH

Chapter 2. Getting Started with QMTest

in the Bourne shell. In the C shell, use:

> setenv PATH /usr/local/bin:${PATH}

On Windows, use:

> PATH C:\progra~1\gm\bin;%PATH%

In order to avoid having to retype these commands every time you want to use QMTest, you can set up
your system so that these commands are executed automatically when you log in. Consult your system’s
manuals to find out how to do this.

2.2. Starting the Graphical Interface

To examine the tests in the test database, you can use QMTest’s graphical user interface. To start the
graphical user interface, use thmtest guicommand, like this:

> gmtest gui

You will see output similar to:

QMTest running at http://127.0.0.1:1158/test/dir

After a moment, a new web browser window will open, and you will see the QMTest graphical user
interface (GUI). If a web browser window does not open, you will have to manually enter the URL that
QMTest printed outHttp://127.0.0.1:1158/test/dir in the example above) into your browser.
Alterantively, you can edit youQM configuration fileto tell QM how to invoke your browser and then
start the GUI again.

The page you see in your browser shows the contents of the test database. You can see that there are three
tests in the database, named@c0 , execl , andexec2 . You can always click on thelome link in the
upper-right corner to return to this page.

QMTest creates a traditional graphical user interface using your web browser. The black bar across the
top of the browser window is QMTest's menu bar.

10

Chapter 2. Getting Started with QMTest

2.3. Running Tests

To run all the tests, choogdl Tests from theRun menu. QMTest will display the test results page. As

the tests run, this page will be automatically updated. (If you do not want to wait for QMTest to update

the page, you can manually reload the page in your browser.) After a few moments, QMTest will display
the test results for the three tests in the database. The upper part of the screen gives a statistical overview
of the test results. Of the three tests, two passed. However, one test failed. You can use this statistical
information to get a quick overview of your application’s correctness.

In addition to showing you how many tests passed and how many failed, QMTest shows you whether

how many tests hadnexpectegbass or fail outcomes. If you know that certain tests will fail, you can tell
QMTest that they are expected to fail. Then, if you are testing a change to your application, you can

easily see whether your change made things better or worse. As long as there are no unexpected failures,
your change did not cause any problems.

If you have not explicitly set up an expectation for a test, QMTest assumes that the test is expected to
pass. That is why QMTest indicated that there was one unexpected failure when you ran the tests.

Below the statistics section, QMTest displays detailed information about each test. In this case, you can
see that thexecl test is the one that is failing. You can click on thetails link to get additional
information about why a particular test is failing.

2.4. Setting Expectations

The easiest way to create expectations is to tell QMTest that you expect future results to be the same as
the results you just obtained. Save the results of your test run by chd@aiegResults from theFile

menu. QMTest will prompt you for a file to use to store the results of your test run. If you exit QMTest,
you can reload this file to recover your test results without rerunning the tests.

You can also use this file to set QMTest's expectations. Chboad Expectations from theFile menu
and provide the same file name that you used when you told QMTest when you asked it to save your
results earlier.

Then, QMTest will redisplay the test results, but now you will see that there are no unexpected failures;
the current results match your expectations.

You can also manually edit expectations. Click onExpectation link next to a particular test to set the
expectation. To set the expectation ésecl back toPASS click on theExpectation link next to

execl , choosePASS and click theOK button. You will see that now thexecl failure is unexpected
again. You can save your expectations by chooSiage Expectations from theFile menu.

11

Chapter 2. Getting Started with QMTest

2.5. Examining Tests

Click on theexecl label to examine the failing test. QMTest will display information about the test. The
most important information about the test istiést classThis test is an instance of the

python.ExecTest class. The test class indicates what kind of égst1 is. QMTest gives a brief
description of the test class in the GUIpgthon.ExecTest checks that a Python expression evaluates
to true.

For more details about the test class, you can click onrlg link to the right of the description.

QMTest will pop up a window that describes the test in more detail. In summayyhan.ExecTest

executes some setup code. Then, a Python expression is evaluated. If the expression evaluates to true, the
test passes; otherwise, it fails.

The setup code and the expression areatigegmentdo the test class. Every test class takes arguments;
the arguments are what differentiate one instance of a test class from another. QMTest displays the
arguments for thexecl testin the GUI. In this case, the sequence of statements is simply the single
statemenk = 2, which assigng to the variablex. The expressionis + x == 5, which compares
+ x with 5. Sincex is 2 in this case, this expression evaluates to false. That is why the test fails.

You can click on théHelp link next to each argument to get more details about exactly what the
argument is for.

2.6. Modifying and Creating Tests

To fix the test, you need to change the arguments to the test. &eliédiest from theEdit menu.
QMTest will display a form that allows you to change the arguments to the test.

Change the second argument, labeled "Python Expression,*tx == 4. Then click on theOK
button at the bottom of the page to save your changes. CAdosd&est from theRun menu and
observe that the test now passes.

Creating a new test works in a similar way. Click on theme link to return to the main QMTest page.

Then, selecNew Test from theFile menu to create a new test. QMTest displays a form that contains

two fields: the test name, and the test class. The test name identifies the test; the test class indicates what
kind of test will be created.

W on “won

Test names must be composed entirely of lowercase letters, numbers, the “_" character, and the *“.
character. You can think of test names like file names. The “.” character takes the place of “/” on UNIX
or “\” on Windows; it allows you to place a test in a particuthrectory. For example, the test name

a.b.c names a test namedn the directorya.b . The directorya.b is a subdirectory of the directoey.

By organizing your tests in directories, you will make it easier to keep track of your tests. In addition,
QMTest can automatically run all the tests in a particular directory, so by using directories you will make
it easy to run a group of related tests at once.

12

Chapter 2. Getting Started with QMTest

Entercommand.testl for the test name. This will create a new test nanestl. in thecommand

directory. Chooseommand.ExecTest as the test class. This kind of test runs a command and compares
its actual output against the expected output. If they match, the test passes. This test class is useful for
testing many programs. Click on tiNext button to continue.

Now, QMTest will present you with a form that looks just like the form you used toesditl , except

that the arguments are different. The arguments are different because you're creating a different kind of
test. Enteecho in thePProgram field. Click on theAdd button to add a program argument and enter

test in the popup dialog box. At this point, you've told gmtest that you want to run the comeral

test This command will produce an output (the waedt) as output, so find th8tandard Output box

and entetest in this box. Make sure to hit theeturn key after you typeest ; theechocommand will
output a carriage return after it prints the waesdt , so you must indicate that you expect a carriage
return. When you are done, click tl@K button at the bottom of the form.

Now you can selecthis Test from theRun menu to run the test.

When you're done experimenting with QMTest, cho&sét from theFile menu.

2.7. Using the Command-Line Interface

All of QMTest'’s functionality is available from the command-line, as well as in the graphical user
interface. When you invokgmteston the command line, you specify a command argument, which tells
the program which action to perform. Some commands require additional options and arguments, which
you place after the command. There are a few options that apply to all commands; to use these options
place them before the command name. For example, in the command:

> gmtest -D . run -f full execl

the-D . option is a generaimtestoption,run is the QMTest command, thé full applies to the
run command, anéxecl is an argument to the run command. This command tests QMTest to run the
execl test from the test databasetith , and to use th&ll format when displaying the results.

To see a list of available commands, and general optiogsitest, invoke it with the--help (or-h)
option. To see a description of each command, and additional options specific to that command, invoke
gmtestcommand--help.

By this point, you have modified the test database using the GUI and have fixed the failing test. Recreate
the original database now by removing and recreatingdihedirectory. On a UNIX system use these
commands:

>cd ..
> rm -rf tdb

13

Chapter 2. Getting Started with QMTest

> cp -r /usr/local/share/qm/tutorial/test/tdb tdb
> cd tdb

On a Windows system, use these commands instead:

cd ..

rmdir /s tdb

xcopy c:\progra~1\gm\share\gm\tutorial\test\itdb tdb\ /s
cd tdb

V V. V V

The command for running testsgstest run. Assuming you made a copy of the example test database
as described in the previous section, execute the following command to run all the tests in the database:

> gmtest run

QMTest runs the tests, and prints a summary of the test run:

--- TEST RESULTS

exec2 . PASS
execO . PASS
execl : FAIL
Expression evaluates to false.
--- STATISTICS
3 tests total
2 (67%) tests PASS
1 (33%) tests FAIL
--- TESTS THAT DID NOT PASS
execl : FAIL

Expression evaluates to false.

14

Chapter 2. Getting Started with QMTest

QMTest shows you the result of the tests as they execute. Then, there is a summary description
containing statistics similar to those shown in the graphical user interface. Finally, QMTest lists the tests
that did not pass, along with the cause of the failure.

2.8. Expectations on the Command Line

When you run QMTest on the command line, it automatically creates a results file ealéd.gmr
You can specify a different filename with the option. Run this command:

> gmtest run -0 expected.gmr

to save the results to a file namexpected.gmr instead of the defauitsults.gmr

Now, when you rerun the tests you can tell QMTest toaxgected.gmr as theexpected results fije
like this:

> gmtest run -O expected.qmr

QMTest will rerun the tests, but this time it will not mention the failureegéc1 . The output will look
like:

--- TEST RESULTS

exec2 . PASS
execO . PASS
execl . XFAIL

Expression evaluates to false.

--- STATISTICS

3 tests total
3 (100%) tests as expected

--- TESTS WITH UNEXPECTED OUTCOMES

None.

15

Chapter 2. Getting Started with QMTest

Note that QMTest indicates that there were no tests with unexpected outcomes, evereteaughtill
fails. ThexXFAIL notation indicates that the test failed, but that failure was expected. In conPass
means that a test passed unexpectedly.

2.9. Reviewing Results

You can use the results file generated by QMTest to get additional information about the tests that failed.
The default results file nameiissults.gmr and is placed in the directory where you ran QMTest.

To examine the results file, use thlemmarize command, like this:

> gmtest summarize -f full

The-f full option indicates that the output should be displayed in more detail. The output will look
like:

--- TEST RESULTS

exec2 . PASS
execO . PASS
execl . FAIL

Expression evaluates to false.

--- STATISTICS

3 tests total
2 (67%) tests PASS
1 (33%) tests FAIL

--- TESTS THAT DID NOT PASS

execl : FAIL
Expression evaluates to false.

ExecTest.expr:
X + X ==25

ExecTest.value:
0

gmtest.target:

16

Chapter 2. Getting Started with QMTest

local

The detailed information indicates what went wrong. The test valuedwasich is considered false by
Python. The information displayed by the “full” format is domain-dependent; it depends on the kind of
application you are testing. The tests in the sample database test basic functionality of the Python
interpreter, so the full report contains information about Python concepts called exceptions and
tracebacks. If you were testing a different application, the full report would contain different information.
For example, if you were testing a database, the detailed results might refer to queries and records.

Notes

1. Under Windows, you must use the standard Windows command shell (DOS) to run QMTest;
alternative shells (such as Cygwin) will not work with QMTest.

17

Chapter 2. Getting Started with QMTest

18

Chapter 3. Using QMTest

This chapter describes QMTest in more detail. It explains the fundamental concepts that QMTest uses,
the test classes that come with QMTest, and how to extend QMTest to support new application domains.

The central principle underlying the design of QMTest is that the problem of testing can be divided into a
domain-dependent problem and a domain-independent problem. The domain-dependent problem is
deciding what to test and how to test it. For example, should a database be tested by performing unit tests
on the C code that makes up the database, or by performing integration tests using SQL queries? How
should the output of a query asking for a set of records be compared to expected output? Does the order
in which the records presented in matter? These are questions that only someone who understands the
application domain can answer.

The domain-independent part of the problem is managing the creation of tests, executing the tests, and
displaying the results for users. For example, how does a user create a new test? How are tests stored?
Should failing tests be reported to the user, even if the failure was expected? These questions are
independent of the application domain; they are just as relevant for compiler tests as they are for database
tests.

QMTest is intended to solve the domain-independent part of the problem and to offer a convenient,
powerful, and flexible interface for solving the domain-dependent problem. QMTest is both a complete
application, in that it can be used “out of the box” to handle many testing domains, and infrastructure, in
that it can be extended to handle other domains.

3.1. QMTest Concepts

This section presents the concepts that underlie QMTest’s design. By understanding these concepts, you
will be able to better understand how QMTest works. In addition, you will find it easier to extend
QMTest to new application domains.

3.1.1. Tests

A testchecks for the correct behavior of the target application. What constitutes correct behavior will

vary depending on the application domain. For example, correct behavior for a database might mean that
it is able to retrieve records correctly while correct behavior for a compiler might mean that it generates
correct object code from input source code.

Every test has a name that uniquely identifies the test, within a gestatabasdest names must be
composed entirely of lowercase letters, numbers, the “_" character, and the “.” character. You can think

of test names like file names. The “.” character takes the place of “/”; it allows you to place a testin a

19

Chapter 3. Using QMTest

particulardirectory. For example, the test namaeéb.c names a test namedn the directorya.b . The
directorya.b is a subdirectory of the directoey.

Every test is an instance of some test class. The test class dictates how the test is run, what constitutes
success, and what constitutes failure. For example;dinenand.ExecTest class that comes with

QMTest executes the target application and looks at its output. The test passes if the actual output exactly
matches the expected output.

The arguments to the test parameterize the test; they are what make two instances of the same test class
different from each other. For example, the argumentetemand.ExecTest indicate which
application to run, what command-line arguments to provide, and what output is expected.

Sometimes, it may be pointless to run one test unless another test has passed. Therefore, each test can
have a set of associatpterequisite testdf the prerequisite tests did not pass, QMTest will not run the
test that depends upon them.

3.1.2. Resources

Some tests take a lot of work to set up. For example, a database test that checks the result of SQL queries
may require that the database first be populated with a substantial number of records. If there are many
tests that all use the same set of records, it would be wasteful to set up the database for each test. It would
be more efficient to set up the database once, run all of the tests, and then remove the databases upon
completion.

You can use aesourceto gain this efficiency. If a test depends on a resource, QMTest will ensure that
the resource is available before the test runs. Once all tests that depend on the resource have been run
QMTest will destroy the resource.

Just as every test is an instance oést classevery resource is an instance aksource classThe

resource class explains how to set up the resource and how to clean up when it is no longer needed. The
arguments to the resource class are what make two instances of the same resource class different from
each other. For example, in the case of a resource that sets up a database, the records to place in the
database might be given as arguments. Every resource has a name, using the same format that is used for
tests. It is possible to have a test and resource with the same name; the test and resource namespaces are
distinct.

Under some circumstances (such as running tests on multiple machines at once), QMTest may create
more than one instance of the same resource. Therefore, you should never depend on there being only
one instance of a resource. In addition, if you have asked QMTest to run tests concurrently, two tests may
access the same resource at the same time.

Setting up or cleaning up a resource produces a result, just like those produced for tests. QMTest will
display these results in its summary output and record them in the results file.

20

Chapter 3. Using QMTest

3.1.3. Context

When you create a test, you choose arguments for the test. The test class uses this information to run the
test. However, the test class may sometimes need information that is not available when the test is
created. For example, if you are writing compiler tests to verify conformance with the C programming
language specification, you do not know the location of the C compiler itself. The C compiler may be
installed in different locations on different machines.

A contextgives users a way of conveying this kind of information to tests. The context is a set of
key/value pairs. The keys and values are always strings. In general, all tests in a given use of QMTest
will have the same context. However, when a resource is set up, it may place additional information in
the context of those tests that depend upon it; the tests can use this information to locate the resource.

3.1.4. Test Results

A resultis anoutcomeogether with somannotations The outcome indicates whether the test passed or
failed. The annotations give additional information about the result, such as the manner in which the test
failed, the output the test produced, or the amount of time it took to run the test.

3.1.4.1. Outcomes

The outcome of a test indicates whether it passed or failed, or whether some exceptional event occurred.
There are four test outcomes:

. PASS: The test succeeded.
« FAIL: The test failed.

- ERROR: A problem occurred in the test execution environment, rather than in the tested system. For
example, this outcome is used when the test class attempted to run an executable in order to test it, but
could not because the system call to create a new process failed.

This outcome may also indicate a defect in QMTest or in the test class.

« UNTESTED: QMTest did not attempt to execute the test. For example, this outcome is used when
QMTest determines that a prerequisite test failed.

21

Chapter 3. Using QMTest

3.1.4.2. Annotations

An annotation is a key/value pair. Both the keys and values must are strings. When a test (or resource)
runs it may add annotations to the result. These annotations are displayed by QMTest and preserved in
the results file. If you write your own test class, you can use annotations to store information that will
make your test class more informative.

3.1.5. Test Suite

A test suites a collection of tests. QMTest can run an entire test suite at once, so by grouping tests
together in a test suite, you make it easier to run a number of tests at once. A single test can be a member
of more than one test suite. A test suite can contain other test suites; the total set of tests in a test suite
includes both those tests included directly and those tests included as part of another test suite. Every test
suite has a name, following the same conventions given above for tests and resources.

One use of test suites is to provide groups of tests that are run in different situations. For example, the
nightly test suite might consist of those tests that should be run automatically every night, while the
checkin test suite might consist of those tests that have to pass before any changes are made to the
target application.

3.1.5.1. Implicit Test Suites

Section 3.1.Explains how you may arrange tests in a tree hierarchy, using a perigch§‘'the path
separator in test names. QMTest definegmlicit test suitefor each directory. The name of these
implicit test suites is the same as the name of the directory. The implicit test suite corresponding to a
directory contains all tests in that directory or its subdirectories.

Consider, for example, a test database which contains tests with these names:

back_end.db_1
back_end.db2
front_end.cmdline
front_end.gui.widget_1
front_end.gui.widget_2

For this test database, QMTest defines implicit test suites witlhh#ols end , front_end , and
front_end.gui . The test suitéront_end contains the testigont_end.cmdline ,
front_end.gui.widget_1 , andfront_end.gui.widget_2

The suite named.™ (a single period) is the implicit test suite corresponding to the root directory in the
test database. This suite therefore contains all tests in the database. For example, the command

22

Chapter 3. Using QMTest

> gmtest run .

is equivalent to:

> gmtest run

Both commands run all tests in the database.

3.1.6. Test Database

A test databasstores tests, test suites, and resources. When you ask QMTest for a particular test by
name, it queries the test database to obtain the test itself. QMTest stores a test database in a single
directory, which may include many files and subdirectories.

In general, QMTest can only use one test database at a time. However, it is possible to create a test
database which contains other test databases. This mechanism allows you to store the tests associated
with different parts of a large application in different test databases, and still combine them into a single
large test database when required.

A single test database can store many different kinds of tests. By default, QMTest stores tests, resources,
and test suites in the test database using subdirectories containing XML files. Generally, there should be
no need to examine or modify these files directly. However, the use of an XML format makes it easy for
you to automatically generate tests from another program, if required.

3.1.7. Targets

A targetis QMTest's abstraction of a machine. By using multiple targets, you can run your tests on
multiple machines at one. If you have many tests, and many machines, you can greatly reduce the
amount of time it takes to run all of your tests by distributing the tests across multiple targets.

By default, QMTest uses only one target: the machine on which you are running QMTest. You may
specify other targets by creating a target file, which lists the available targets and their attributes, and
specifying the target file when you involgentest SeeSection 3.6.2or details on writing and using

target files.

Each target is a member of a singgeget group All machines in the same target group are considered
equivalent. A target group is specified by a string. If you are testing software on multiple platforms at
once, the target group might correspond to machines running the same operating system. For example,

23

Chapter 3. Using QMTest

all Intel 80386 compatible machines running GNU/Linux might be in iB&6-pc-linux-gnu " target
group.
Section 3.&lescribes how you specify and use targets with QMTest.

3.2. Running Tests

To run one or more tests, use tipmtest run command. Each invocation of tiggntest run command is

a single test run, and produces a single set of test results and statistics. Specify as arguments the names of
tests and test suites to run. Even if you specify a test more than once, either directly or by incorporation

in a test suite, QMTest runs it only once.

If you wish to run all tests in the test database, use the implicit test.s(éteingle period; seBection
3.1.5.), or omit all IDs from the command line.

QMTest can run tests in multiple concurrent threads of execution or on multiple remote hosts. See the
documentation for theun commandor details.

3.2.1. Ordering and Dependencies

Given one or more input test names and test suite names, QMTest employs the following procedure to
determine which tests and resources to run and the order in which they are run.

1. QMTest resolves test names and test suite names. Test suites are expanded into the tests they
contain. Since test suites may contain other test suites, this process is repeated until all test suites
have been expanded. The result is a set of tests that are to be run.

2. QMTest computes a schedule for running the tests to be run such that a test’s prerequisites are run
before the test itself is run. Prerequisites not included in the test run are ignored. Outside of this
condition, the order in which tests are run is undefined.

If QMTest is invoked to run tests in parallel or distributed across setangets the tests are

distributed among them as well. QMTest does not guarantee that a test’s prerequisites are run on the
same target, though. On each target, tests are assigned to the next available concurrent process or
thread.

3. QMTest determines the required resources for the tests to be run. If several tests require the same
resource, QMTest attempts to run all of the tests on the same target. In this case, the resource is set
up and cleaned up only once. In some cases, QMTest may schedule the tests on multiple targets; in
that case, the resource is set up and cleaned up once on each target.

24

Chapter 3. Using QMTest

In some cases, a test, resource setup function, or resource cleanup function is not executed:

- A test specifies for each of its prerequisite tests an expected outcome. If the prerequisite is included in
the test run and the actual outcome of the prerequisite test is different from the expected outcome, the
test is not run. Instead, it is given an UNTESTED outcome.

If a test’s prerequisite is not included in the test run, that prerequisite is ignored.

- If a setup function for one of the resources required by a test fails, the test is given an UNTESTED
outcome.

- The cleanup function of a resource is run after the last test that requires that resource, whether or not
that test was run. The cleanup function is run even if the setup function failed.

3.2.2. The Context

QMTest passes a context object to Buen method of a test that is run and to thetUp method of a
resource.

Most of the properties of the context are the same for all tests and resource functions run during a single
test run. These properties are configured as part of the test run. For example, when you run tests using the
gmtest run command, you may specify individual context properties with-tbentext (-c) or

--load-context (-C) options.

In addition, a resource setup function may add additional properties to a context. These added properties
do not become part of the common context; they are hidden from other tests and resources except that the
properties added by a resource are visible to tests that require that resource.

For instance, a resour&etUp function might allocate the resource and place a handle to it (for instance,
a temporary directory name or a database session key) in the context as a context property. Tests that
require that resource have access to the temporary resource via the handle stored in the context. The
resource’s cleanup function also uses the handle to deallocate the resource. That information should be
stored in the resource object itself since no context is made available Gtetive)p .

3.3. Test Database Contents

The default QMTest test database implementation stores the database as a directory hierarchy containing
XML files. Each QMTest subdirectrory is represented by a subdirectory in the filesystem. A test, suite, or

25

Chapter 3. Using QMTest

resource is represented by an XML file. These files have file extengjons .gms , and.gma,
respectively.

Expert QMTest users may modify the contents of the test database directly by editing these files.
However, it is the user’s responsibility to ensure the integrity and validity of the XML contents of each
file. For example, file and directory names should contain only characters allowed in identifiers
(lower-case letters, digits, hyphens, and underscores); a period should only be used before a file
extension, such agmt . Also, the files and directories in a test database should not be modified directly
while QMTest is running with that test database.

3.4. Invoking QMTest

All QMTest functionality is available using thgmtest command.

3.4.1. gmtest

3.4.1.1. Synopsis

gmtest [option ...]command [command-option ...][argument ..]]

3.4.1.2. Options

These options can be used with any QMTest command, and must precede the command name on the
command line.

All options are available in a "long form" prefixed with "--" (two hyphens). Some options also may be
specified in a "short form" consisting of a single hyphen and a one-letter abbreviation. Short-form
options may be combined; for examplabcis equivalent tca -b -c.

-D path

-tdb path
Use the test database located in the directory givepdbly . This flag overrides the value of the
environment variable QMTEST_DB_PATH. If neither this flag nor the environment variable is
specified, QMTest assumes that the current directory should be used as the datalfaseti@ee
3.1.6

26

Chapter 3. Using QMTest

-h
--help

Display help information, listing commands and general options fogthest command.
-V
--verbose

Generate progress and status messages while executing. This option may be specified more than
once; the more times it is specified, the higher the verbose level, and the more messages are printed.

Additional options are available for specific commands; these are presented with each command. Options
specific to a command must follow the command on the command line. Specifyé¢le (-h) option
after the command for a description of the command and a list of of available options for that command.

3.4.2. gmtest create-tdb

3.4.2.1. Summary

Create a new test database.

3.4.2.2. Synopsis

gmtest create-tdb [option ...]

3.4.2.3. Description

Thegmtest create-tdbcommand creates a new, empty test database. A test database is a directory in
which QMTest stores configuration files, tests, and other data. Certain test database classes may also
store data elsewhere, such as in an external relational database.

The test database is created in the directory specifieddty (-D) option or by setting the
QMTEST_DB_PATH environment variable. The path you specify for the new test database must not
exist. (If no database path is specified, QMTest assumes that the current directory is the test database.
Since the current directory already exists, QMTest will issue an error. Therefore, when using the
create-tdb command, the database directory must be explicitly specified.)

By default, QMTest creates a new test database that uses the standard XML-based implementation. (See
Section 3.8or information about writing a test database class.)

27

Chapter 3. Using QMTest

The create-tdb command accepts these options:

-a hame=value
--attribute name=value

Set the database attributame to value . The set of attribute names and valid values is dependent
on the database class in use. The default database class accepts no attributes.

-c class
--class class

Use the test database class giverclags . Once you create a test database, you cannot change the
test database implementation it uses. If you do not use this option, QMTest will use the default test
database implementation, which uses an XML file format to store tests.

3.4.3. gmtest gui

3.4.3.1. Summary

Start the graphical user interface.

3.4.3.2. Synopsis

gmtest gui [option ...]

3.4.3.3. Description

Thegmtest guistarts the graphical user interface. The graphical user interface is accessed through a web
browser. You must have a web browser that supports JavaScript to use the graphical interface. QMTest
has been tested with recent versions of Internet Explorer and Netscape Navigator. Other web browsers
may or may nor work with QMTest.

Thegui command accepts these options:

28

Chapter 3. Using QMTest

-A address
--address address

Bind the server to the indicated interragtdress , which should be a dotted quad. By default, the
server binds itself to the addres®7.0.0.1 , which is the address of the local machine. If you

specify another address, the server will be accessible to users on other machines. QMTest does not
perform any authentication of remote users, so you should not use this option unless you have a
firewall in place that blocks all untrusted users.

-c name=value
--context name=value

For details about this option, see the description ofpimest run command.
-C file
--load-context file

For details about this option, see the description ofpimest run command.
-j count
--concurrency count

For details about this option, see the description ofpimeest run command.

--no-browser

Do not attempt to start a web browser when starting the GUI. QMTest will still print out the URL at
which the server can be accessed. You can then connect to this URL manually using the browser of
your choice.

--port port
Specify theport on which the QMTest GUI will listen for connections. If this option is not
provided, QMTest will select an available port automatically.

-T file

--targets file

For details about this option, see the description ofpimest run command.

29

Chapter 3. Using QMTest

3.4.4. gmtest run

3.4.4.1. Summary

Run tests or test suites.

3.4.4.2. Synopsis

gmtest run [option ..][test-name |suite-name ..

3.4.4.3. Description

Thegmtest run command runs tests and displays the results. If no test or suite names are specified,
QMTest runs all of the tests in the test database. If test or suite names are specified, only those tests or
suites are run. Tests listed more than once (directly or by inclusion in a test suite) are run only once.

Therun command accepts these options:

-c nhame=value
--context name=value

Add a property to théest execution contexThe name of the property iame, and its value is set
to the stringvalue .

This option may be specified multiple times.

-C file
--load-context file

Read properties for thest execution contextom the filefile

The file should be a text file with one context property on each line, in the faramag=value .
Leading and trailing whitespace on each line are ignored. Also, blank lines and lines that begin with
"#" (a hash mark) are ignored as comments.

This option may be specified more than once, and used in conjunction witltéheext option.

30

Chapter 3. Using QMTest

-f format
-format format

Control the format used when displaying results. The format specified must be fufle gbrief
stats , ornone. Thebrief format is the default. In th&ull format, QMTest displays any
annotations provided in test results. In thief mode only the causes of failures are shown;
detailed annotations are not shown. In ¢kets format, no details about failing tests are displayed;
only statistics showing the number of passing and failing tests are displayed.nonéhenode, no
results are displayed, but a results file is still created, unlessrhv@utput option is also
provided.

-j count
--concurrency count

Run tests in multipleount concurrent processes on the local computer. On multiprocessor
machines, the processes may be scheduled to run in parallel on different processors. QMTest
automatically collects results from the processes and presents combines test results and summary.
By default, one process is used.

This option may not be combined with theargets (-T) option

--no-output

Do not produce a test results file.
-0 file
--output file

Write full test results tdile . Specify " (a hyphen) to write results to standard output. If neither
this option nor-no-output is specified, the results are written to the file namesdits.gmr in
the current directory.

-0 file
--option file

Treatfile as a set of expected outcomes. Titee must have be a results file created either by
gmtest run, or by saving results in the graphical user interface. QMTest will expect the results of
the current test run to match those specified irfilliee and will highlight differences from those
results.

-s file
--summary file

Write a summary of the test run file . Specify “ " (a hyphen) to write results to standard output

31

Chapter 3. Using QMTest

(the default).

QMTest prints a summary of test results, including statistics and the names of tests that did not pass.
If expected outcomes were specified, the the names of tests that had unexpected results are printed,
instead of the names of tests that did not pass.

-S
--no-summary

Do not produce a summary of the test run.

--seed integer

For each test run, QMTest randomizes the order in which tests are run, subject to the constraints
described irSection 3.2.1The random number generator is seeded using the system time. This
maximizes the chance of detecting unanticipated dependencies among tests across multiple test
runs.

For debugging purposes, it is sometimes necessary to obtain a reproducible sequence of tests. Use
the--seed option to specify the seed for the random number generator.

Note that even with the same random number seed, if tests are run on targets with a concurrency
greater than one, scheduling uncertainty may still produce variation in the order in which tests are
run.

-T file
--targets file

Use targets specified in target specificationfflee . SeeSection 3.6.2or a description of the
target file syntax.

3.4.5. gmtest summarize

3.4.5.1. Summary

Thegmtest summarizedisplays information stored in a results file.

32

Chapter 3. Using QMTest

3.4.5.2. Synopsis

gmtest summarize [option ...] [test-name | suite-name ...]

3.4.5.3. Description

The gmtest summarizeextracts information stored in a results file and displays this information on the
console. The information is formatted just as if the tests had just been run, but QMTest does not actually
run the tests.

Thesummarizecommand accepts the following options:

-f format
--format format

For details about this option, see the description ofoimest run command.
-0 file
--option file

For details about this option, see the description ofgimest run command.

3.4.6. Environment Variables

QMTest recognizes the following environment variables:

QM_PYTHON

If this environment variable is set, QMTest uses it as as the path to the Python interpreter. If this
environment variable is not set, QMTest looks for a file namghon in thebin directory where
QM is installed. If this file does not exist, blsr/bin/python2 exists, QMTest will use that
path. Otherwise, QMTest searchesfgthon in the directories listed in the PATH environment
variable.

QMTEST_CLASS_PATH

If this environment variable is set, it should contain a list of directories in the same format as used
for the system’s PATH environment variable. These directories are searched (before the directories
that QMTest searches by default) when looking for extension classes such as test classes and
database classes.

33

Chapter 3. Using QMTest

QMTEST_DB_PATH

If this environment variable is set, its value is used as the location of the test database, unless the
-tdb (-D) option is used. If this environment variable is not set and-#de option is not used,
the current directory is used as the test database.

3.5. Test and Resource Classes

This section describes test classes and resource classes included with (Bdtdsh 3.7.Jrovides
instructions for writing your own test class&gction 3.7.2or resource classes.

3.5.1. Test Classes

3.5.1.1. command.ExecTest

Thecommand.ExecTest test class runs a program from an ordinary executable file. Each test specifies
the program executable to run, its full command line, and the data to feed to its standard input stream.
ExecTest collects the complete text of the program’s standard output and standard error streams and the
program’s exit code, and compares these to expected values specified in the test. If the standard output
and error text and the exit code match the expected values, the test passes.

A command.ExecTest test supplies the following arguments:
Program (text field)

The name of the executable file to reommand.ExecTest attempts to locate the program
executable in the path specified by the path property of the test context.

Argument List (set of strings)

The argument list for the program. The elements of this set are sequential items from which the
program’s argument list is constructedmmand.ExecTest automatically prepends an implicit
zeroth element, the full path of the program.

34

Chapter 3. Using QMTest

Standard Input (text field)

Text or data to pass to the program’s standard input stream. This data is written to a temporary file,
and the contents of the file are directed to the program’s standard input stream.

Environment (set of strings)

The environment (i.e. the set of environment variables) available to the executing program. Each
element of this argument is a string of the forARIABLE=VALUE".

command.ExecTest adds additional environment variables automatically. Each context property is
accessible as an environment variable; the name of the environment variable is the name of the
context property, prefixed with "QMV_".

Expected Exit Code (integer field)
The exit code value expected from the program. If the program produces an exit code value
different from this one, the test fails.

Expected Standard Output (text field)
The text or data which the program is expected to produce on its standard output stream. The actual
text or data written to standard output is captured, @minand.ExecTest performs a bytewise
comparison to the expected text or data. If they do not match, the test fails.

Expected Standard Error (text field)
The text or data which the program is expected to produce on its standard error stream. The actual

text or data written to standard error is captured, @xmand.ExecTest performs a bytewise
comparison to the expected text or data. If they do not match, the test fails.

3.5.1.2. command.ShellCommandTest

command.ShellCommandTest is very similar tocommand.ExecTest , except that it runs a program
via the shell rather than directly. Instead of specifying an executable to run and the elements of its

35

Chapter 3. Using QMTest

argument list, a test provides a single command line. The shell is responsible for finding the executable
and constructing its argument list.

Standard input and the environment are specified in the test. The test passes if the command produces the
expected standard output, standard error, and exit code.

Note that most shells create local shell variables to mirror the contents of the environment when the shell
starts up. Therefore, the environment set up byramand.ShellCommandTest , including the contents

of the test context, are directly accessible via shell variables. The syntax to use depends on the particular
shell.

command.ShellCommandTest has the same fields asmmand.ExecTest , except that the Program
and Argument List properties are replaced with these:

Command (text field)

The command to run. The command is delivered verbatim to the shell. The shell interprets the
command according to its own quoting rules and syntax.

3.5.1.3. command.ShellScriptTest

command.ShellScriptTest is an extension ofommand.CommandTest that lets a test specify an
entire shell script instead of a single command. The script specified in the test is written to a temporary
file, and this file is interpreted by the specified shell or command interpreter program.

Standard input, the environment, and the argument list to pass to the script are specified in the test. The
test passes if the script produces the expected standard output, standard error, and exit code.

Note that most shells create local shell variables to mirror the contents of the environment when the shell
starts up. Therefore, the environment set up byramand.ShellScriptTest , including the contents

of the test context, are directly accessible via shell variables. The syntax to use depends on the particular
shell.

command.ShellScriptTest has the same fields asmmand.ExecTest , except that the Program
property is replaced with:

Script (text field)

The text of the script to run.

36

Chapter 3. Using QMTest

3.6. Test Targets

Test targets represent entities that QMTest uses to run testSesgen 3.1.For an overview of how
QMTest uses targets.

3.6.1. Target Specification

Each target specification includes the following:

1. The name of the target. This is a name identifying the target, such as the host name of the computer
which will run the tests. Target names should be unique in a single target file.

2. Thetarget class Similar to a test class, a target class is a Python class which implements a type of
target. As with test classes, a target class is identified by its name, which includes the module name
and the class name.

For examplethread_target. ThreadTarget is the name of a target class, provided by QMTest,
which runs tests in multiple threads on the local computer.

QMTest includes several target class implementationsSseton 3.6.3or details.

3. A target groumame. The test implementor may choose the syntax of target group names in a test
implementation. Target groups may be used to encode information about target attributes, such as
architecture and operating system, and capabilities.

4. A concurrencyalue, which must be a positive integer. Most target classes support concurrent
execution of multiple tests on the target. This number allows the target specification to control how
many tests are executed simultaneously.

5. Optionally, a target specification may include additional properties. Properties are named and have
string values. Some target classes may use property information to control their configuration. For
instance, a target class which executes tests on a remote computer would extract the network address
of the remote computer from a target property.

37

Chapter 3. Using QMTest

3.6.2. Target Files

In atarget file you specify the computers or other test targets on which QMTest runs tests. Use the
-targets (-T) optionto thegmtest run command to specify the target file.

A target file is an XML document containing elements represenérget specificationd he document
type is-//Software Carpentry//QMTest Target VO.1//EN , and the document element is
targets.

Each target specification is represented by a target element, and includes name, class, group, and
concurrency elements. Additional property elements may provide target properties.

For example, the following target file specifies two targets for running tests.

<?xml version="1.0' encoding="IS0O-8859-1'?>
<IDOCTYPE targets PUBLIC "-//Software Carpentry//QMTest Target VO.1//EN" "http://www.software-
carpentry.com/gm/xml/target.dtd">
<targets>
<target>
<name>local</name>
<class>thread_target.ThreadTarget</class>
<group>i386-pc-linux-gnu</group>
<concurrency>1</concurrency>
</target>
<target>
<name>remote</name>
<class>rsh_target. RSHTarget</class>
<group>sparc-sun-solaris2.5.1</group>
<concurrency>2</concurrency>
<property name="host">sunshine</property>
<property name="arguments">-| test</property>
</target>
</targets>

The first target is théocal GNU/Linux computer. The second target is a remote computer running
SPARC Solaris. QMTest invokes tests on the remote target usigate shelinvocation. The remote
computer’s name is "sunshine", and two tests are run concurrently on that target.

3.6.3. Target Classes

QMTest includes these target class implementations.

38

Chapter 3. Using QMTest

3.6.3.1. Thread Target

Thethread_target.ThreadTarget target class runs tests in one or more threads on the local
computer (the computer on which thentestcommand is invoked). The number of threads is the degree
of concurrency specified for the target.

3.6.3.2. Remote Shell Target

Thersh_target.RSHTarget target class runs tests on a remote computer via a remote shell invocation
(rsh, ssh or similar). This target uses a remote shell to invoke a program similar gntibest command

on the remote computer. This remote program accepts test commands and responds with results from
running these tests.

To useRSHTarget , the remote computer must have QMTest installed and must contain an identical copy
of the test database. QMTest does not transfer entire tests over the remote shell connection; instead, it
relies on the remote test database for loading tests.

In addition, the remote shell program must be configured to allow a remote login without additional
intervention (such as typing a password). If you tste you can use amhosts file to set this up. If
you usessh you can use an SSH public key and gsf-agentprogram for this. See the corresponding
manual pages for details.

The concurrency value of the target specification controls the number tests that may be run concurrently
on the remote host.

TheRSHTarget target class takes its configuration from the following target properties:

- The remote_shell property specifies the path to the remote shell program. If omitted, the configuration
variable remote_shell is used instead. If neither is specified, the defaudt/tsn/ssh . The remote
shell program must accept the same command-line synteshas

« The host property specifies the remote host name. If omitted, the target name is used.

- The database_path property specifies the path to the test database on the remote computer. The test
database must be identical to the local test database. If omitted, the local test database path is used.

- The arguments property specifies additional command-line arguments for the remote shell program.
The value of this property is split at space characters, and the arguments are added to the command
line before the name of the remote host.

For example, if you are using tleshremote shell program and wish to log in to the remote computer
using a different user account, specify theisername option using the arguments property.

39

Chapter 3. Using QMTest

- QMTest uses the remote shell to invoke timtest_remoteprogram on the remote host. This program
is installed by default irusr/local/bin/gmtest . You may override this and use a version in a
different place by specifying the gmtest_remote property.

3.7. Writing Test and Resource Classes

You can implement many tests using the test classes supplied with QMTest. However, expert test
implementors may wish to create new test classes to customize existing tests or implement new testing
behavior. In addition, implementors will wish to create resource classes, to add customized setup and
cleanup behavior to tests and groups of tests.

3.7.1. Writing Test Classes

In QMTest, a test class is represented by a Python class. The class must inherit from
gm.test.test. Test . The class must include two things: atguments attribute, whose value is a
sequence of field objects, andRan function.

3.7.1.1. The arguments Attribute

The test class must include arguments attribute, indicating the types of the test class’s parameters.
Thearguments attributes value should be a sequence consisting of field objects. A field object is an
instance of a subclass gffn.fields.Field . The names of the arguments (specified by the "name”
attribute of the field object) are the names of the parameters of the test class.

For instance, this definition of theguments attribute declares two parameters for the test class. One
parameter, called "input_text", takes a text value. The other parameter, called "value_list", takes a set of
integers.

arguments = |
gm.fields.IssueFieldText(
name="input_text"),
gm.fields.IssueFieldSet(gm.fields.IssueFieldInteger(
name="value_list")),

]

40

Chapter 3. Using QMTest

Test classes should also initialize tite ~ anddescription attributes of each field. The values of
these attributes help users of the test class identify the purpose and semantics of each of the test class’s
parameters.

3.7.1.2. The Run Function
The heart of the test class is tRan function. This function runs the test and produces a test result.

TheRun function takes two arguments: the context and the result. The context object satisfies the
interface of theym.test.context.Context Python class (though it may in actuality be an instance of
a different Python class).

The result object is an instance @fi.test.result.Result . By default, the result will indicate that
the test passes. If the test fails, the test class should cabthemethod on the result to indicate failure.

If the Run raises an unhandled exception, QMTest creates a result for the test with the outcome ERROR.
Test classes should be designed so that they do not raise unhandled exceptions in the course of normal
use (including test failures). An unhandled exception should reflect an internal error in the
implementation of the test class.

3.7.1.3. Using the Context

A context object is simply a dictionary of properties. Use Python’s map syntax to access a context’s
properties. A property key is always a string composed of letters, digits, hyphens, underscores, and
periods. Property values are strings.

A test’'sRun function only sees context properties added by QMTest itself and properties added by the
setup functions of required resources.

3.7.1.4. Creating Results

In case of a FAIL result, it is conventional to assign Result. CAUSE property a string value providing

a description of why the test failed. These two equivalent examples demonstrate how to indicates test
failure (both assume that thyen.test.result.Result class has been imported into the module’s
global namespace).

result.Fail()

result[Result. CAUSE] = "Unexpected end of input.”

or

41

Chapter 3. Using QMTest

result.Fail("Unexpected end of input.")

Sometimes, &un function implementation detects a failure by catching an exception. The method
Result.NoteException provides a convenient mechanism for creating a result that includes
information about the exception. For example:

try:
... run test code here ...
except EndOfFileError:
result.NoteException()

TheNoteException method will automatically add annotations describing the cause of the exception.

3.7.2. Writing Resource Classes

Writing resource classes is similar to writing test classes. The requirements are the same except that,
instead of &Run function, you must provide two functions namgetUp andCleanUp to perform

resource setup and cleanup. ®&Up function must have the same signature as a test drasshe
CleanUp function is similar, but does not takecantext parameter.

The setup function may add additional properties to the context. These properties will be visible only to
tests that require this resource. To insert a context property, use Python’s map assignment syntax.

Below is an example of setup and cleanup functions for a resource whiclkrealls my_resource
anddestroy_my_resource to do the work of creating and destroying the resource. The resource is
identified by a string handle, which is inserted into the context under the Rasov@rce.handle

where it may be accessed by tests. Context property names should always have thledsmame so
that there is no risk of collision between properties created by different resource classes.

def SetUp(self, context, result):

try:
handle = create_my_resource()
self.__handle = handle

except:
result.NoteException()

else:
context['resource_handle"] = str(handle)

def CleanUp(self, result):
try:

42

Chapter 3. Using QMTest

destroy_my_resource(self.__handle)
except:
result.NoteException()

3.7.3. Specifying a Test or Resource Class

To use your test or resource class, you must place the Python module file containing it in a location where
QMTest can find it. QMTest looks in three places when loading module files for test and resource classes:

- If the environment variable QMTEST_CLASS_PATH is defined, QMTest first checks any directories
listed in it. This value of this environment variable should be a list of directories to check for the
module file, in the same format as the standard PATH environment variable.

« Atest database may specify locations to check for module files when loading a class. QMTest test
database implementations generally check the subdirectory n@meekt in the top test database
directory for test and resource classes. (Note that QMTest may place other files in this directory; you
should not disturb them.) Module files containing test and resource classes may be placed in this
directory.

- Finally, QMTest checks a standard directory. This directory, installed with QMTest, contains modules
with the standard test classes describe8éuotion 3.5

You should generally place module files containing your test classes in the test database’s test class
directory, unless you plan to use the test classes in more than one test database.

Assuming the Python module file containing the test class is located in one of the directories specified
above, you can refer to it using the syntasdule.Class , wheremodule is the name of the module and
Class is the name of the class.

3.8. Writing a Database Class

The database class controls the format in which tests are stored. QMTest’s default database class stores
each test as an XML file, but you might want to use a format that is particularly well suited to your
application domain or to your organization’s arrangement of computing resources.

For example, if you were testing a compiler, you might want to represent tests as source files with special
embedded comments indicating what errors are expected when compiling the test. You could write a test
database class that can read and write tests in that format.

43

Chapter 3. Using QMTest

Or, if you wanted to share a single test database with many people in such a way that everyone
automatically saw updates to the database, you might want to put all of the tests on a central HTTP
server. You could write a test database class that retrieves tests from the server and creates new tests by
uploading them to the server.

A test database class is a Python class that is deriveddnorast.database.Database . You must

define methods that handle retrieving a test from the database, writing a test to the database, and other
related tasks. Read the code fpm.test.database.Database to see what methods need to be
overridden.

To use your new database class, create a new test database usioigdbe (-c) option

44

Chapter 4. The QM Configuration File

QM allows you to set up a per-user configuration file that contains your personal preferences, defaults,
and settings.

The configuration file is namesHOME/.gmrc . On Windows, you may have to set the HOME
environment variable manually.

The QM configuration file is a plain text file, with a format similar to that used in Microsoft Windows

ANI files. It is divided into sections by headings in square brackets. Three sections are supported:
[common] contains configuration variables common to all the QM tools, wiikt] contains

configuration variables specific to QMTest. Within each section, configuration variables are set using the
syntaxvariable =value .

Here is a sample QM configuration file:
> cat ~/.qmrc

[common]
browser=/ust/local/bin/netscape

4.1. Configuration Variables

These configuration variables are used in all QM tools. You should define them[ootiv@on] section
of your QM configuration file.

browser (UNIX-like platforms only)

The path to your preferred web browser. If omitted, QM makes an attempt to locate a browser on
your computer.

command_shell

The shell program to run a single shell command. The value of this property is the path to the shell
executable, optionally followed by command-line options to pass to the shell, separated by spaces.
The shell command to run is appended to the command.

On GNU/Linux systems, the defaultfsin/bash -norc -noprofile -c . On other UNIX-like
systems, the default ibin/sh -c

45

Chapter 4. The QM Configuration File

script_shell

The shell program to run a shell script. The value of this property is the path to the shell executable,
optionally followed by command-line options to pass to the shell, separated by spaces. The filename
of the shell command is appended to the command.

On GNU/Linux systems, the default/fisin/bash -norc -noprofile . On other UNIX-like
systems, the default ibin/sh

sendmail (UNIX-like platforms only)

The path to theendmail program, or a compatible replacement. This program is used for sending
email messages. The default valuéus/lib/sendmail

remote_shell (UNIX-like platforms only)

The program used for running commands on remote computers. The program must accept the same
syntax as the standarsh command, and should be configured to run the command remotely

without any additional interaction (such as requesting a password from the TTY). The default value
is /usr/bin/ssh

46

	Table of Contents
	Chapter 1. Introduction
	Chapter 2. Getting Started with QMTest
	2.1. Setting Up
	2.2. Starting the Graphical Interface
	2.3. Running Tests
	2.4. Setting Expectations
	2.5. Examining Tests
	2.6. Modifying and Creating Tests
	2.7. Using the CommandLine Interface
	2.8. Expectations on the Command Line
	2.9. Reviewing Results

	Chapter 3. Using QMTest
	3.1. QMTest Concepts
	3.1.1. Tests
	3.1.2. Resources
	3.1.3. Context
	3.1.4. Test Results
	3.1.4.1. Outcomes
	3.1.4.2. Annotations

	3.1.5. Test Suite
	3.1.5.1. Implicit Test Suites

	3.1.6. Test Database
	3.1.7. Targets

	3.2. Running Tests
	3.2.1. Ordering and Dependencies
	3.2.2. The Context

	3.3. Test Database Contents
	3.4. Invoking QMTest
	3.4.1. qmtest
	3.4.1.1. Synopsis
	3.4.1.2. Options

	3.4.2. qmtest createtdb
	3.4.2.1. Summary
	3.4.2.2. Synopsis
	3.4.2.3. Description

	3.4.3. qmtest gui
	3.4.3.1. Summary
	3.4.3.2. Synopsis
	3.4.3.3. Description

	3.4.4. qmtest run
	3.4.4.1. Summary
	3.4.4.2. Synopsis
	3.4.4.3. Description

	3.4.5. qmtest summarize
	3.4.5.1. Summary
	3.4.5.2. Synopsis
	3.4.5.3. Description

	3.4.6. Environment Variables

	3.5. Test and Resource Classes
	3.5.1. Test Classes
	3.5.1.1. command.ExecTest
	Program (text field)
	Argument List (set of strings)
	Standard Input (text field)
	Environment (set of strings)
	Expected Exit Code (integer field)
	Expected Standard Output (text field)
	Expected Standard Error (text field)

	3.5.1.2. command.ShellCommandTest
	Command (text field)

	3.5.1.3. command.ShellScriptTest
	Script (text field)

	3.6. Test Targets
	3.6.1. Target Specification
	3.6.2. Target Files
	3.6.3. Target Classes
	3.6.3.1. Thread Target
	3.6.3.2. Remote Shell Target

	3.7. Writing Test and Resource Classes
	3.7.1. Writing Test Classes
	3.7.1.1. The arguments Attribute
	3.7.1.2. The Run Function
	3.7.1.3. Using the Context
	3.7.1.4. Creating Results

	3.7.2. Writing Resource Classes
	3.7.3. Specifying a Test or Resource Class

	3.8. Writing a Database Class

	Chapter 4. The QM Configuration File
	4.1. Configuration Variables
	browser (UNIXlike platforms only)
	commandshell
	scriptshell
	sendmail (UNIXlike platforms only)
	remoteshell (UNIXlike platforms only)

