Main Page | Class Hierarchy | Alphabetical List | Class List | Directories | File List | Class Members | File Members | Related Pages

vtkHexahedron Class Reference

#include <vtkHexahedron.h>

Inheritance diagram for vtkHexahedron:

Inheritance graph
[legend]
Collaboration diagram for vtkHexahedron:

Collaboration graph
[legend]
List of all members.

Detailed Description

a cell that represents a linear 3D hexahedron

vtkHexahedron is a concrete implementation of vtkCell to represent a linear, 3D rectangular hexahedron (e.g., "brick" topology). vtkHexahedron uses the standard isoparametric shape functions for a linear hexahedron. The hexahedron is defined by the eight points (0-7) where (0,1,2,3) is the base of the hexahedron which, using the right hand rule, forms a quadrilaterial whose normal points in the direction of the opposite face (4,5,6,7).

Examples:
vtkHexahedron (Examples)
Tests:
vtkHexahedron (Tests)

Definition at line 41 of file vtkHexahedron.h.

Public Types

typedef vtkCell3D Superclass

Public Member Functions

virtual const char * GetClassName ()
virtual int IsA (const char *type)
virtual void GetEdgePoints (int edgeId, int *&pts)
virtual void GetFacePoints (int faceId, int *&pts)
int GetCellType ()
int GetNumberOfEdges ()
int GetNumberOfFaces ()
vtkCellGetEdge (int edgeId)
vtkCellGetFace (int faceId)
int CellBoundary (int subId, double pcoords[3], vtkIdList *pts)
void Contour (double value, vtkDataArray *cellScalars, vtkPointLocator *locator, vtkCellArray *verts, vtkCellArray *lines, vtkCellArray *polys, vtkPointData *inPd, vtkPointData *outPd, vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd)
int EvaluatePosition (double x[3], double *closestPoint, int &subId, double pcoords[3], double &dist2, double *weights)
void EvaluateLocation (int &subId, double pcoords[3], double x[3], double *weights)
int IntersectWithLine (double p1[3], double p2[3], double tol, double &t, double x[3], double pcoords[3], int &subId)
int Triangulate (int index, vtkIdList *ptIds, vtkPoints *pts)
void Derivatives (int subId, double pcoords[3], double *values, int dim, double *derivs)
virtual double * GetParametricCoords ()
void JacobianInverse (double pcoords[3], double **inverse, double derivs[24])

Static Public Member Functions

static vtkHexahedronNew ()
static int IsTypeOf (const char *type)
static vtkHexahedronSafeDownCast (vtkObject *o)
static void InterpolationFunctions (double pcoords[3], double weights[8])
static void InterpolationDerivs (double pcoords[3], double derivs[24])
static int * GetEdgeArray (int edgeId)
static int * GetFaceArray (int faceId)

Protected Member Functions

 vtkHexahedron ()
 ~vtkHexahedron ()

Protected Attributes

vtkLineLine
vtkQuadQuad


Member Typedef Documentation

typedef vtkCell3D vtkHexahedron::Superclass
 

Reimplemented from vtkCell3D.

Definition at line 45 of file vtkHexahedron.h.


Constructor & Destructor Documentation

vtkHexahedron::vtkHexahedron  )  [protected]
 

vtkHexahedron::~vtkHexahedron  )  [protected]
 


Member Function Documentation

static vtkHexahedron* vtkHexahedron::New  )  [static]
 

Create an object with Debug turned off, modified time initialized to zero, and reference counting on.

Reimplemented from vtkObject.

virtual const char* vtkHexahedron::GetClassName  )  [virtual]
 

Reimplemented from vtkCell3D.

static int vtkHexahedron::IsTypeOf const char *  type  )  [static]
 

Return 1 if this class type is the same type of (or a subclass of) the named class. Returns 0 otherwise. This method works in combination with vtkTypeRevisionMacro found in vtkSetGet.h.

Reimplemented from vtkCell3D.

virtual int vtkHexahedron::IsA const char *  type  )  [virtual]
 

Return 1 if this class is the same type of (or a subclass of) the named class. Returns 0 otherwise. This method works in combination with vtkTypeRevisionMacro found in vtkSetGet.h.

Reimplemented from vtkCell3D.

static vtkHexahedron* vtkHexahedron::SafeDownCast vtkObject o  )  [static]
 

Reimplemented from vtkCell3D.

virtual void vtkHexahedron::GetEdgePoints int  edgeId,
int *&  pts
[virtual]
 

See vtkCell3D API for description of these methods.

Implements vtkCell3D.

virtual void vtkHexahedron::GetFacePoints int  faceId,
int *&  pts
[virtual]
 

Get the list of vertices that define a face. The list is terminated with a negative number. Note that the vertices are 0-offset; that is, they refer to the ids of the cell, not the point ids of the mesh that the cell belongs to. The faceId must range between 0<=faceId<this->GetNumberOfFaces().

Implements vtkCell3D.

int vtkHexahedron::GetCellType  )  [inline, virtual]
 

See the vtkCell API for descriptions of these methods.

Implements vtkCell.

Definition at line 55 of file vtkHexahedron.h.

References VTK_HEXAHEDRON.

int vtkHexahedron::GetNumberOfEdges  )  [inline, virtual]
 

Return the number of edges in the cell.

Implements vtkCell.

Definition at line 56 of file vtkHexahedron.h.

int vtkHexahedron::GetNumberOfFaces  )  [inline, virtual]
 

Return the number of faces in the cell.

Implements vtkCell.

Definition at line 57 of file vtkHexahedron.h.

vtkCell* vtkHexahedron::GetEdge int  edgeId  )  [virtual]
 

Return the edge cell from the edgeId of the cell.

Implements vtkCell.

vtkCell* vtkHexahedron::GetFace int  faceId  )  [virtual]
 

Return the face cell from the faceId of the cell.

Implements vtkCell.

int vtkHexahedron::CellBoundary int  subId,
double  pcoords[3],
vtkIdList pts
[virtual]
 

Given parametric coordinates of a point, return the closest cell boundary, and whether the point is inside or outside of the cell. The cell boundary is defined by a list of points (pts) that specify a face (3D cell), edge (2D cell), or vertex (1D cell). If the return value of the method is != 0, then the point is inside the cell.

Implements vtkCell.

void vtkHexahedron::Contour double  value,
vtkDataArray cellScalars,
vtkPointLocator locator,
vtkCellArray verts,
vtkCellArray lines,
vtkCellArray polys,
vtkPointData inPd,
vtkPointData outPd,
vtkCellData inCd,
vtkIdType  cellId,
vtkCellData outCd
[virtual]
 

Generate contouring primitives. The scalar list cellScalars are scalar values at each cell point. The point locator is essentially a points list that merges points as they are inserted (i.e., prevents duplicates). Contouring primitives can be vertices, lines, or polygons. It is possible to interpolate point data along the edge by providing input and output point data - if outPd is NULL, then no interpolation is performed. Also, if the output cell data is non-NULL, the cell data from the contoured cell is passed to the generated contouring primitives. (Note: the CopyAllocate() method must be invoked on both the output cell and point data. The cellId refers to the cell from which the cell data is copied.)

Implements vtkCell.

int vtkHexahedron::EvaluatePosition double  x[3],
double *  closestPoint,
int &  subId,
double  pcoords[3],
double &  dist2,
double *  weights
[virtual]
 

Given a point x[3] return inside(=1) or outside(=0) cell; evaluate parametric coordinates, sub-cell id (!=0 only if cell is composite), distance squared of point x[3] to cell (in particular, the sub-cell indicated), closest point on cell to x[3] (unless closestPoint is null, in which case, the closest point and dist2 are not found), and interpolation weights in cell. (The number of weights is equal to the number of points defining the cell). Note: on rare occasions a -1 is returned from the method. This means that numerical error has occurred and all data returned from this method should be ignored. Also, inside/outside is determine parametrically. That is, a point is inside if it satisfies parametric limits. This can cause problems for cells of topological dimension 2 or less, since a point in 3D can project onto the cell within parametric limits but be "far" from the cell. Thus the value dist2 may be checked to determine true in/out.

Implements vtkCell.

void vtkHexahedron::EvaluateLocation int &  subId,
double  pcoords[3],
double  x[3],
double *  weights
[virtual]
 

Determine global coordinate (x[3]) from subId and parametric coordinates. Also returns interpolation weights. (The number of weights is equal to the number of points in the cell.)

Implements vtkCell.

int vtkHexahedron::IntersectWithLine double  p1[3],
double  p2[3],
double  tol,
double &  t,
double  x[3],
double  pcoords[3],
int &  subId
[virtual]
 

Intersect with a ray. Return parametric coordinates (both line and cell) and global intersection coordinates, given ray definition and tolerance. The method returns non-zero value if intersection occurs.

Implements vtkCell.

int vtkHexahedron::Triangulate int  index,
vtkIdList ptIds,
vtkPoints pts
[virtual]
 

Generate simplices of proper dimension. If cell is 3D, tetrahedron are generated; if 2D triangles; if 1D lines; if 0D points. The form of the output is a sequence of points, each n+1 points (where n is topological cell dimension) defining a simplex. The index is a parameter that controls which triangulation to use (if more than one is possible). If numerical degeneracy encountered, 0 is returned, otherwise 1 is returned.

Implements vtkCell.

void vtkHexahedron::Derivatives int  subId,
double  pcoords[3],
double *  values,
int  dim,
double *  derivs
[virtual]
 

Compute derivatives given cell subId and parametric coordinates. The values array is a series of data value(s) at the cell points. There is a one-to-one correspondence between cell point and data value(s). Dim is the number of data values per cell point. Derivs are derivatives in the x-y-z coordinate directions for each data value. Thus, if computing derivatives for a scalar function in a hexahedron, dim=1, 8 values are supplied, and 3 deriv values are returned (i.e., derivatives in x-y-z directions). On the other hand, if computing derivatives of velocity (vx,vy,vz) dim=3, 24 values are supplied ((vx,vy,vz)1, (vx,vy,vz)2, ....()8), and 9 deriv values are returned ((d(vx)/dx),(d(vx)/dy),(d(vx)/dz), (d(vy)/dx),(d(vy)/dy), (d(vy)/dz), (d(vz)/dx),(d(vz)/dy),(d(vz)/dz)).

Implements vtkCell.

virtual double* vtkHexahedron::GetParametricCoords  )  [virtual]
 

Return a contiguous array of parametric coordinates of the points defining this cell. In other words, (px,py,pz, px,py,pz, etc..) The coordinates are ordered consistent with the definition of the point ordering for the cell. This method returns a non-NULL pointer when the cell is a primary type (i.e., IsPrimaryCell() is true). Note that 3D parametric coordinates are returned no matter what the topological dimension of the cell.

Reimplemented from vtkCell.

static void vtkHexahedron::InterpolationFunctions double  pcoords[3],
double  weights[8]
[static]
 

Hexahedron specific.

static void vtkHexahedron::InterpolationDerivs double  pcoords[3],
double  derivs[24]
[static]
 

static int* vtkHexahedron::GetEdgeArray int  edgeId  )  [static]
 

static int* vtkHexahedron::GetFaceArray int  faceId  )  [static]
 

void vtkHexahedron::JacobianInverse double  pcoords[3],
double **  inverse,
double  derivs[24]
 

Given parametric coordinates compute inverse Jacobian transformation matrix. Returns 9 elements of 3x3 inverse Jacobian plus interpolation function derivatives.


Member Data Documentation

vtkLine* vtkHexahedron::Line [protected]
 

Definition at line 97 of file vtkHexahedron.h.

vtkQuad* vtkHexahedron::Quad [protected]
 

Definition at line 98 of file vtkHexahedron.h.


The documentation for this class was generated from the following file: