FFmpeg  4.3.6
huffyuvenc.c
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2002-2014 Michael Niedermayer <michaelni@gmx.at>
3  *
4  * see http://www.pcisys.net/~melanson/codecs/huffyuv.txt for a description of
5  * the algorithm used
6  *
7  * This file is part of FFmpeg.
8  *
9  * FFmpeg is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public
11  * License as published by the Free Software Foundation; either
12  * version 2.1 of the License, or (at your option) any later version.
13  *
14  * FFmpeg is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with FFmpeg; if not, write to the Free Software
21  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
22  *
23  * yuva, gray, 4:4:4, 4:1:1, 4:1:0 and >8 bit per sample support sponsored by NOA
24  */
25 
26 /**
27  * @file
28  * huffyuv encoder
29  */
30 
31 #include "avcodec.h"
32 #include "huffyuv.h"
33 #include "huffman.h"
34 #include "huffyuvencdsp.h"
35 #include "internal.h"
36 #include "lossless_videoencdsp.h"
37 #include "put_bits.h"
38 #include "libavutil/opt.h"
39 #include "libavutil/pixdesc.h"
40 
41 static inline void diff_bytes(HYuvContext *s, uint8_t *dst,
42  const uint8_t *src0, const uint8_t *src1, int w)
43 {
44  if (s->bps <= 8) {
45  s->llvidencdsp.diff_bytes(dst, src0, src1, w);
46  } else {
47  s->hencdsp.diff_int16((uint16_t *)dst, (const uint16_t *)src0, (const uint16_t *)src1, s->n - 1, w);
48  }
49 }
50 
51 static inline int sub_left_prediction(HYuvContext *s, uint8_t *dst,
52  const uint8_t *src, int w, int left)
53 {
54  int i;
55  int min_width = FFMIN(w, 32);
56 
57  if (s->bps <= 8) {
58  for (i = 0; i < min_width; i++) { /* scalar loop before dsp call */
59  const int temp = src[i];
60  dst[i] = temp - left;
61  left = temp;
62  }
63  if (w < 32)
64  return left;
65  s->llvidencdsp.diff_bytes(dst + 32, src + 32, src + 31, w - 32);
66  return src[w-1];
67  } else {
68  const uint16_t *src16 = (const uint16_t *)src;
69  uint16_t *dst16 = ( uint16_t *)dst;
70  for (i = 0; i < min_width; i++) { /* scalar loop before dsp call */
71  const int temp = src16[i];
72  dst16[i] = temp - left;
73  left = temp;
74  }
75  if (w < 32)
76  return left;
77  s->hencdsp.diff_int16(dst16 + 32, src16 + 32, src16 + 31, s->n - 1, w - 32);
78  return src16[w-1];
79  }
80 }
81 
82 static inline void sub_left_prediction_bgr32(HYuvContext *s, uint8_t *dst,
83  const uint8_t *src, int w,
84  int *red, int *green, int *blue,
85  int *alpha)
86 {
87  int i;
88  int r, g, b, a;
89  int min_width = FFMIN(w, 8);
90  r = *red;
91  g = *green;
92  b = *blue;
93  a = *alpha;
94 
95  for (i = 0; i < min_width; i++) {
96  const int rt = src[i * 4 + R];
97  const int gt = src[i * 4 + G];
98  const int bt = src[i * 4 + B];
99  const int at = src[i * 4 + A];
100  dst[i * 4 + R] = rt - r;
101  dst[i * 4 + G] = gt - g;
102  dst[i * 4 + B] = bt - b;
103  dst[i * 4 + A] = at - a;
104  r = rt;
105  g = gt;
106  b = bt;
107  a = at;
108  }
109 
110  s->llvidencdsp.diff_bytes(dst + 32, src + 32, src + 32 - 4, w * 4 - 32);
111 
112  *red = src[(w - 1) * 4 + R];
113  *green = src[(w - 1) * 4 + G];
114  *blue = src[(w - 1) * 4 + B];
115  *alpha = src[(w - 1) * 4 + A];
116 }
117 
118 static inline void sub_left_prediction_rgb24(HYuvContext *s, uint8_t *dst,
119  uint8_t *src, int w,
120  int *red, int *green, int *blue)
121 {
122  int i;
123  int r, g, b;
124  r = *red;
125  g = *green;
126  b = *blue;
127  for (i = 0; i < FFMIN(w, 16); i++) {
128  const int rt = src[i * 3 + 0];
129  const int gt = src[i * 3 + 1];
130  const int bt = src[i * 3 + 2];
131  dst[i * 3 + 0] = rt - r;
132  dst[i * 3 + 1] = gt - g;
133  dst[i * 3 + 2] = bt - b;
134  r = rt;
135  g = gt;
136  b = bt;
137  }
138 
139  s->llvidencdsp.diff_bytes(dst + 48, src + 48, src + 48 - 3, w * 3 - 48);
140 
141  *red = src[(w - 1) * 3 + 0];
142  *green = src[(w - 1) * 3 + 1];
143  *blue = src[(w - 1) * 3 + 2];
144 }
145 
146 static void sub_median_prediction(HYuvContext *s, uint8_t *dst, const uint8_t *src1, const uint8_t *src2, int w, int *left, int *left_top)
147 {
148  if (s->bps <= 8) {
149  s->llvidencdsp.sub_median_pred(dst, src1, src2, w , left, left_top);
150  } else {
151  s->hencdsp.sub_hfyu_median_pred_int16((uint16_t *)dst, (const uint16_t *)src1, (const uint16_t *)src2, s->n - 1, w , left, left_top);
152  }
153 }
154 
155 static int store_table(HYuvContext *s, const uint8_t *len, uint8_t *buf)
156 {
157  int i;
158  int index = 0;
159  int n = s->vlc_n;
160 
161  for (i = 0; i < n;) {
162  int val = len[i];
163  int repeat = 0;
164 
165  for (; i < n && len[i] == val && repeat < 255; i++)
166  repeat++;
167 
168  av_assert0(val < 32 && val >0 && repeat < 256 && repeat>0);
169  if (repeat > 7) {
170  buf[index++] = val;
171  buf[index++] = repeat;
172  } else {
173  buf[index++] = val | (repeat << 5);
174  }
175  }
176 
177  return index;
178 }
179 
181 {
182  int i, ret;
183  int size = 0;
184  int count = 3;
185 
186  if (s->version > 2)
187  count = 1 + s->alpha + 2*s->chroma;
188 
189  for (i = 0; i < count; i++) {
190  if ((ret = ff_huff_gen_len_table(s->len[i], s->stats[i], s->vlc_n, 0)) < 0)
191  return ret;
192 
193  if (ff_huffyuv_generate_bits_table(s->bits[i], s->len[i], s->vlc_n) < 0) {
194  return -1;
195  }
196 
197  size += store_table(s, s->len[i], buf + size);
198  }
199  return size;
200 }
201 
203 {
204  HYuvContext *s = avctx->priv_data;
205  int i, j;
206  int ret;
208 
209  ff_huffyuv_common_init(avctx);
210  ff_huffyuvencdsp_init(&s->hencdsp, avctx);
212 
213  avctx->extradata = av_mallocz(3*MAX_N + 4);
214  if (s->flags&AV_CODEC_FLAG_PASS1) {
215 #define STATS_OUT_SIZE 21*MAX_N*3 + 4
216  avctx->stats_out = av_mallocz(STATS_OUT_SIZE); // 21*256*3(%llu ) + 3(\n) + 1(0) = 16132
217  if (!avctx->stats_out)
218  return AVERROR(ENOMEM);
219  }
220  s->version = 2;
221 
222  if (!avctx->extradata)
223  return AVERROR(ENOMEM);
224 
225 #if FF_API_CODED_FRAME
228  avctx->coded_frame->key_frame = 1;
230 #endif
231 #if FF_API_PRIVATE_OPT
233  if (avctx->context_model == 1)
234  s->context = avctx->context_model;
236 #endif
237 
238  s->bps = desc->comp[0].depth;
239  s->yuv = !(desc->flags & AV_PIX_FMT_FLAG_RGB) && desc->nb_components >= 2;
240  s->chroma = desc->nb_components > 2;
241  s->alpha = !!(desc->flags & AV_PIX_FMT_FLAG_ALPHA);
243  &s->chroma_h_shift,
244  &s->chroma_v_shift);
245 
246  switch (avctx->pix_fmt) {
247  case AV_PIX_FMT_YUV420P:
248  case AV_PIX_FMT_YUV422P:
249  if (s->width & 1) {
250  av_log(avctx, AV_LOG_ERROR, "Width must be even for this colorspace.\n");
251  return AVERROR(EINVAL);
252  }
253  s->bitstream_bpp = avctx->pix_fmt == AV_PIX_FMT_YUV420P ? 12 : 16;
254  break;
255  case AV_PIX_FMT_YUV444P:
256  case AV_PIX_FMT_YUV410P:
257  case AV_PIX_FMT_YUV411P:
258  case AV_PIX_FMT_YUV440P:
259  case AV_PIX_FMT_GBRP:
260  case AV_PIX_FMT_GBRP9:
261  case AV_PIX_FMT_GBRP10:
262  case AV_PIX_FMT_GBRP12:
263  case AV_PIX_FMT_GBRP14:
264  case AV_PIX_FMT_GBRP16:
265  case AV_PIX_FMT_GRAY8:
266  case AV_PIX_FMT_GRAY16:
267  case AV_PIX_FMT_YUVA444P:
268  case AV_PIX_FMT_YUVA420P:
269  case AV_PIX_FMT_YUVA422P:
270  case AV_PIX_FMT_GBRAP:
271  case AV_PIX_FMT_YUV420P9:
276  case AV_PIX_FMT_YUV422P9:
281  case AV_PIX_FMT_YUV444P9:
295  s->version = 3;
296  break;
297  case AV_PIX_FMT_RGB32:
298  s->bitstream_bpp = 32;
299  break;
300  case AV_PIX_FMT_RGB24:
301  s->bitstream_bpp = 24;
302  break;
303  default:
304  av_log(avctx, AV_LOG_ERROR, "format not supported\n");
305  return AVERROR(EINVAL);
306  }
307  s->n = 1<<s->bps;
308  s->vlc_n = FFMIN(s->n, MAX_VLC_N);
309 
311  s->decorrelate = s->bitstream_bpp >= 24 && !s->yuv && !(desc->flags & AV_PIX_FMT_FLAG_PLANAR);
312 #if FF_API_PRIVATE_OPT
314  if (avctx->prediction_method)
315  s->predictor = avctx->prediction_method;
317 #endif
318  s->interlaced = avctx->flags & AV_CODEC_FLAG_INTERLACED_ME ? 1 : 0;
319  if (s->context) {
321  av_log(avctx, AV_LOG_ERROR,
322  "context=1 is not compatible with "
323  "2 pass huffyuv encoding\n");
324  return AVERROR(EINVAL);
325  }
326  }
327 
328  if (avctx->codec->id == AV_CODEC_ID_HUFFYUV) {
329  if (avctx->pix_fmt == AV_PIX_FMT_YUV420P) {
330  av_log(avctx, AV_LOG_ERROR,
331  "Error: YV12 is not supported by huffyuv; use "
332  "vcodec=ffvhuff or format=422p\n");
333  return AVERROR(EINVAL);
334  }
335 #if FF_API_PRIVATE_OPT
336  if (s->context) {
337  av_log(avctx, AV_LOG_ERROR,
338  "Error: per-frame huffman tables are not supported "
339  "by huffyuv; use vcodec=ffvhuff\n");
340  return AVERROR(EINVAL);
341  }
342  if (s->version > 2) {
343  av_log(avctx, AV_LOG_ERROR,
344  "Error: ver>2 is not supported "
345  "by huffyuv; use vcodec=ffvhuff\n");
346  return AVERROR(EINVAL);
347  }
348 #endif
349  if (s->interlaced != ( s->height > 288 ))
350  av_log(avctx, AV_LOG_INFO,
351  "using huffyuv 2.2.0 or newer interlacing flag\n");
352  }
353 
355  av_log(avctx, AV_LOG_ERROR, "Ver > 3 is under development, files encoded with it may not be decodable with future versions!!!\n"
356  "Use vstrict=-2 / -strict -2 to use it anyway.\n");
357  return AVERROR(EINVAL);
358  }
359 
360  if (s->bitstream_bpp >= 24 && s->predictor == MEDIAN && s->version <= 2) {
361  av_log(avctx, AV_LOG_ERROR,
362  "Error: RGB is incompatible with median predictor\n");
363  return AVERROR(EINVAL);
364  }
365 
366  ((uint8_t*)avctx->extradata)[0] = s->predictor | (s->decorrelate << 6);
367  ((uint8_t*)avctx->extradata)[2] = s->interlaced ? 0x10 : 0x20;
368  if (s->context)
369  ((uint8_t*)avctx->extradata)[2] |= 0x40;
370  if (s->version < 3) {
371  ((uint8_t*)avctx->extradata)[1] = s->bitstream_bpp;
372  ((uint8_t*)avctx->extradata)[3] = 0;
373  } else {
374  ((uint8_t*)avctx->extradata)[1] = ((s->bps-1)<<4) | s->chroma_h_shift | (s->chroma_v_shift<<2);
375  if (s->chroma)
376  ((uint8_t*)avctx->extradata)[2] |= s->yuv ? 1 : 2;
377  if (s->alpha)
378  ((uint8_t*)avctx->extradata)[2] |= 4;
379  ((uint8_t*)avctx->extradata)[3] = 1;
380  }
381  s->avctx->extradata_size = 4;
382 
383  if (avctx->stats_in) {
384  char *p = avctx->stats_in;
385 
386  for (i = 0; i < 4; i++)
387  for (j = 0; j < s->vlc_n; j++)
388  s->stats[i][j] = 1;
389 
390  for (;;) {
391  for (i = 0; i < 4; i++) {
392  char *next;
393 
394  for (j = 0; j < s->vlc_n; j++) {
395  s->stats[i][j] += strtol(p, &next, 0);
396  if (next == p) return -1;
397  p = next;
398  }
399  }
400  if (p[0] == 0 || p[1] == 0 || p[2] == 0) break;
401  }
402  } else {
403  for (i = 0; i < 4; i++)
404  for (j = 0; j < s->vlc_n; j++) {
405  int d = FFMIN(j, s->vlc_n - j);
406 
407  s->stats[i][j] = 100000000 / (d*d + 1);
408  }
409  }
410 
412  if (ret < 0)
413  return ret;
414  s->avctx->extradata_size += ret;
415 
416  if (s->context) {
417  for (i = 0; i < 4; i++) {
418  int pels = s->width * s->height / (i ? 40 : 10);
419  for (j = 0; j < s->vlc_n; j++) {
420  int d = FFMIN(j, s->vlc_n - j);
421  s->stats[i][j] = pels/(d*d + 1);
422  }
423  }
424  } else {
425  for (i = 0; i < 4; i++)
426  for (j = 0; j < s->vlc_n; j++)
427  s->stats[i][j]= 0;
428  }
429 
430  if (ff_huffyuv_alloc_temp(s)) {
432  return AVERROR(ENOMEM);
433  }
434 
435  s->picture_number=0;
436 
437  return 0;
438 }
439 static int encode_422_bitstream(HYuvContext *s, int offset, int count)
440 {
441  int i;
442  const uint8_t *y = s->temp[0] + offset;
443  const uint8_t *u = s->temp[1] + offset / 2;
444  const uint8_t *v = s->temp[2] + offset / 2;
445 
446  if (s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb) >> 3) < 2 * 4 * count) {
447  av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
448  return -1;
449  }
450 
451 #define LOAD4\
452  int y0 = y[2 * i];\
453  int y1 = y[2 * i + 1];\
454  int u0 = u[i];\
455  int v0 = v[i];
456 
457  count /= 2;
458 
459  if (s->flags & AV_CODEC_FLAG_PASS1) {
460  for(i = 0; i < count; i++) {
461  LOAD4;
462  s->stats[0][y0]++;
463  s->stats[1][u0]++;
464  s->stats[0][y1]++;
465  s->stats[2][v0]++;
466  }
467  }
469  return 0;
470  if (s->context) {
471  for (i = 0; i < count; i++) {
472  LOAD4;
473  s->stats[0][y0]++;
474  put_bits(&s->pb, s->len[0][y0], s->bits[0][y0]);
475  s->stats[1][u0]++;
476  put_bits(&s->pb, s->len[1][u0], s->bits[1][u0]);
477  s->stats[0][y1]++;
478  put_bits(&s->pb, s->len[0][y1], s->bits[0][y1]);
479  s->stats[2][v0]++;
480  put_bits(&s->pb, s->len[2][v0], s->bits[2][v0]);
481  }
482  } else {
483  for(i = 0; i < count; i++) {
484  LOAD4;
485  put_bits(&s->pb, s->len[0][y0], s->bits[0][y0]);
486  put_bits(&s->pb, s->len[1][u0], s->bits[1][u0]);
487  put_bits(&s->pb, s->len[0][y1], s->bits[0][y1]);
488  put_bits(&s->pb, s->len[2][v0], s->bits[2][v0]);
489  }
490  }
491  return 0;
492 }
493 
494 static int encode_plane_bitstream(HYuvContext *s, int width, int plane)
495 {
496  int i, count = width/2;
497 
498  if (s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb) >> 3) < count * s->bps / 2) {
499  av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
500  return -1;
501  }
502 
503 #define LOADEND\
504  int y0 = s->temp[0][width-1];
505 #define LOADEND_14\
506  int y0 = s->temp16[0][width-1] & mask;
507 #define LOADEND_16\
508  int y0 = s->temp16[0][width-1];
509 #define STATEND\
510  s->stats[plane][y0]++;
511 #define STATEND_16\
512  s->stats[plane][y0>>2]++;
513 #define WRITEEND\
514  put_bits(&s->pb, s->len[plane][y0], s->bits[plane][y0]);
515 #define WRITEEND_16\
516  put_bits(&s->pb, s->len[plane][y0>>2], s->bits[plane][y0>>2]);\
517  put_bits(&s->pb, 2, y0&3);
518 
519 #define LOAD2\
520  int y0 = s->temp[0][2 * i];\
521  int y1 = s->temp[0][2 * i + 1];
522 #define LOAD2_14\
523  int y0 = s->temp16[0][2 * i] & mask;\
524  int y1 = s->temp16[0][2 * i + 1] & mask;
525 #define LOAD2_16\
526  int y0 = s->temp16[0][2 * i];\
527  int y1 = s->temp16[0][2 * i + 1];
528 #define STAT2\
529  s->stats[plane][y0]++;\
530  s->stats[plane][y1]++;
531 #define STAT2_16\
532  s->stats[plane][y0>>2]++;\
533  s->stats[plane][y1>>2]++;
534 #define WRITE2\
535  put_bits(&s->pb, s->len[plane][y0], s->bits[plane][y0]);\
536  put_bits(&s->pb, s->len[plane][y1], s->bits[plane][y1]);
537 #define WRITE2_16\
538  put_bits(&s->pb, s->len[plane][y0>>2], s->bits[plane][y0>>2]);\
539  put_bits(&s->pb, 2, y0&3);\
540  put_bits(&s->pb, s->len[plane][y1>>2], s->bits[plane][y1>>2]);\
541  put_bits(&s->pb, 2, y1&3);
542 
543  if (s->bps <= 8) {
544  if (s->flags & AV_CODEC_FLAG_PASS1) {
545  for (i = 0; i < count; i++) {
546  LOAD2;
547  STAT2;
548  }
549  if (width&1) {
550  LOADEND;
551  STATEND;
552  }
553  }
555  return 0;
556 
557  if (s->context) {
558  for (i = 0; i < count; i++) {
559  LOAD2;
560  STAT2;
561  WRITE2;
562  }
563  if (width&1) {
564  LOADEND;
565  STATEND;
566  WRITEEND;
567  }
568  } else {
569  for (i = 0; i < count; i++) {
570  LOAD2;
571  WRITE2;
572  }
573  if (width&1) {
574  LOADEND;
575  WRITEEND;
576  }
577  }
578  } else if (s->bps <= 14) {
579  int mask = s->n - 1;
580  if (s->flags & AV_CODEC_FLAG_PASS1) {
581  for (i = 0; i < count; i++) {
582  LOAD2_14;
583  STAT2;
584  }
585  if (width&1) {
586  LOADEND_14;
587  STATEND;
588  }
589  }
591  return 0;
592 
593  if (s->context) {
594  for (i = 0; i < count; i++) {
595  LOAD2_14;
596  STAT2;
597  WRITE2;
598  }
599  if (width&1) {
600  LOADEND_14;
601  STATEND;
602  WRITEEND;
603  }
604  } else {
605  for (i = 0; i < count; i++) {
606  LOAD2_14;
607  WRITE2;
608  }
609  if (width&1) {
610  LOADEND_14;
611  WRITEEND;
612  }
613  }
614  } else {
615  if (s->flags & AV_CODEC_FLAG_PASS1) {
616  for (i = 0; i < count; i++) {
617  LOAD2_16;
618  STAT2_16;
619  }
620  if (width&1) {
621  LOADEND_16;
622  STATEND_16;
623  }
624  }
626  return 0;
627 
628  if (s->context) {
629  for (i = 0; i < count; i++) {
630  LOAD2_16;
631  STAT2_16;
632  WRITE2_16;
633  }
634  if (width&1) {
635  LOADEND_16;
636  STATEND_16;
637  WRITEEND_16;
638  }
639  } else {
640  for (i = 0; i < count; i++) {
641  LOAD2_16;
642  WRITE2_16;
643  }
644  if (width&1) {
645  LOADEND_16;
646  WRITEEND_16;
647  }
648  }
649  }
650 #undef LOAD2
651 #undef STAT2
652 #undef WRITE2
653  return 0;
654 }
655 
656 static int encode_gray_bitstream(HYuvContext *s, int count)
657 {
658  int i;
659 
660  if (s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb) >> 3) < 4 * count) {
661  av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
662  return -1;
663  }
664 
665 #define LOAD2\
666  int y0 = s->temp[0][2 * i];\
667  int y1 = s->temp[0][2 * i + 1];
668 #define STAT2\
669  s->stats[0][y0]++;\
670  s->stats[0][y1]++;
671 #define WRITE2\
672  put_bits(&s->pb, s->len[0][y0], s->bits[0][y0]);\
673  put_bits(&s->pb, s->len[0][y1], s->bits[0][y1]);
674 
675  count /= 2;
676 
677  if (s->flags & AV_CODEC_FLAG_PASS1) {
678  for (i = 0; i < count; i++) {
679  LOAD2;
680  STAT2;
681  }
682  }
684  return 0;
685 
686  if (s->context) {
687  for (i = 0; i < count; i++) {
688  LOAD2;
689  STAT2;
690  WRITE2;
691  }
692  } else {
693  for (i = 0; i < count; i++) {
694  LOAD2;
695  WRITE2;
696  }
697  }
698  return 0;
699 }
700 
701 static inline int encode_bgra_bitstream(HYuvContext *s, int count, int planes)
702 {
703  int i;
704 
705  if (s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb) >> 3) <
706  4 * planes * count) {
707  av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
708  return -1;
709  }
710 
711 #define LOAD_GBRA \
712  int g = s->temp[0][planes == 3 ? 3 * i + 1 : 4 * i + G]; \
713  int b =(s->temp[0][planes == 3 ? 3 * i + 2 : 4 * i + B] - g) & 0xFF;\
714  int r =(s->temp[0][planes == 3 ? 3 * i + 0 : 4 * i + R] - g) & 0xFF;\
715  int a = s->temp[0][planes * i + A];
716 
717 #define STAT_BGRA \
718  s->stats[0][b]++; \
719  s->stats[1][g]++; \
720  s->stats[2][r]++; \
721  if (planes == 4) \
722  s->stats[2][a]++;
723 
724 #define WRITE_GBRA \
725  put_bits(&s->pb, s->len[1][g], s->bits[1][g]); \
726  put_bits(&s->pb, s->len[0][b], s->bits[0][b]); \
727  put_bits(&s->pb, s->len[2][r], s->bits[2][r]); \
728  if (planes == 4) \
729  put_bits(&s->pb, s->len[2][a], s->bits[2][a]);
730 
731  if ((s->flags & AV_CODEC_FLAG_PASS1) &&
733  for (i = 0; i < count; i++) {
734  LOAD_GBRA;
735  STAT_BGRA;
736  }
737  } else if (s->context || (s->flags & AV_CODEC_FLAG_PASS1)) {
738  for (i = 0; i < count; i++) {
739  LOAD_GBRA;
740  STAT_BGRA;
741  WRITE_GBRA;
742  }
743  } else {
744  for (i = 0; i < count; i++) {
745  LOAD_GBRA;
746  WRITE_GBRA;
747  }
748  }
749  return 0;
750 }
751 
753  const AVFrame *pict, int *got_packet)
754 {
755  HYuvContext *s = avctx->priv_data;
756  const int width = s->width;
757  const int width2 = s->width>>1;
758  const int height = s->height;
759  const int fake_ystride = s->interlaced ? pict->linesize[0]*2 : pict->linesize[0];
760  const int fake_ustride = s->interlaced ? pict->linesize[1]*2 : pict->linesize[1];
761  const int fake_vstride = s->interlaced ? pict->linesize[2]*2 : pict->linesize[2];
762  const AVFrame * const p = pict;
763  int i, j, size = 0, ret;
764 
765  if ((ret = ff_alloc_packet2(avctx, pkt, width * height * 3 * 4 + AV_INPUT_BUFFER_MIN_SIZE, 0)) < 0)
766  return ret;
767 
768  if (s->context) {
769  size = store_huffman_tables(s, pkt->data);
770  if (size < 0)
771  return size;
772 
773  for (i = 0; i < 4; i++)
774  for (j = 0; j < s->vlc_n; j++)
775  s->stats[i][j] >>= 1;
776  }
777 
778  init_put_bits(&s->pb, pkt->data + size, pkt->size - size);
779 
780  if (avctx->pix_fmt == AV_PIX_FMT_YUV422P ||
781  avctx->pix_fmt == AV_PIX_FMT_YUV420P) {
782  int lefty, leftu, leftv, y, cy;
783 
784  put_bits(&s->pb, 8, leftv = p->data[2][0]);
785  put_bits(&s->pb, 8, lefty = p->data[0][1]);
786  put_bits(&s->pb, 8, leftu = p->data[1][0]);
787  put_bits(&s->pb, 8, p->data[0][0]);
788 
789  lefty = sub_left_prediction(s, s->temp[0], p->data[0], width , 0);
790  leftu = sub_left_prediction(s, s->temp[1], p->data[1], width2, 0);
791  leftv = sub_left_prediction(s, s->temp[2], p->data[2], width2, 0);
792 
793  encode_422_bitstream(s, 2, width-2);
794 
795  if (s->predictor==MEDIAN) {
796  int lefttopy, lefttopu, lefttopv;
797  cy = y = 1;
798  if (s->interlaced) {
799  lefty = sub_left_prediction(s, s->temp[0], p->data[0] + p->linesize[0], width , lefty);
800  leftu = sub_left_prediction(s, s->temp[1], p->data[1] + p->linesize[1], width2, leftu);
801  leftv = sub_left_prediction(s, s->temp[2], p->data[2] + p->linesize[2], width2, leftv);
802 
803  encode_422_bitstream(s, 0, width);
804  y++; cy++;
805  }
806 
807  lefty = sub_left_prediction(s, s->temp[0], p->data[0] + fake_ystride, 4, lefty);
808  leftu = sub_left_prediction(s, s->temp[1], p->data[1] + fake_ustride, 2, leftu);
809  leftv = sub_left_prediction(s, s->temp[2], p->data[2] + fake_vstride, 2, leftv);
810 
811  encode_422_bitstream(s, 0, 4);
812 
813  lefttopy = p->data[0][3];
814  lefttopu = p->data[1][1];
815  lefttopv = p->data[2][1];
816  s->llvidencdsp.sub_median_pred(s->temp[0], p->data[0] + 4, p->data[0] + fake_ystride + 4, width - 4, &lefty, &lefttopy);
817  s->llvidencdsp.sub_median_pred(s->temp[1], p->data[1] + 2, p->data[1] + fake_ustride + 2, width2 - 2, &leftu, &lefttopu);
818  s->llvidencdsp.sub_median_pred(s->temp[2], p->data[2] + 2, p->data[2] + fake_vstride + 2, width2 - 2, &leftv, &lefttopv);
819  encode_422_bitstream(s, 0, width - 4);
820  y++; cy++;
821 
822  for (; y < height; y++,cy++) {
823  uint8_t *ydst, *udst, *vdst;
824 
825  if (s->bitstream_bpp == 12) {
826  while (2 * cy > y) {
827  ydst = p->data[0] + p->linesize[0] * y;
828  s->llvidencdsp.sub_median_pred(s->temp[0], ydst - fake_ystride, ydst, width, &lefty, &lefttopy);
829  encode_gray_bitstream(s, width);
830  y++;
831  }
832  if (y >= height) break;
833  }
834  ydst = p->data[0] + p->linesize[0] * y;
835  udst = p->data[1] + p->linesize[1] * cy;
836  vdst = p->data[2] + p->linesize[2] * cy;
837 
838  s->llvidencdsp.sub_median_pred(s->temp[0], ydst - fake_ystride, ydst, width, &lefty, &lefttopy);
839  s->llvidencdsp.sub_median_pred(s->temp[1], udst - fake_ustride, udst, width2, &leftu, &lefttopu);
840  s->llvidencdsp.sub_median_pred(s->temp[2], vdst - fake_vstride, vdst, width2, &leftv, &lefttopv);
841 
842  encode_422_bitstream(s, 0, width);
843  }
844  } else {
845  for (cy = y = 1; y < height; y++, cy++) {
846  uint8_t *ydst, *udst, *vdst;
847 
848  /* encode a luma only line & y++ */
849  if (s->bitstream_bpp == 12) {
850  ydst = p->data[0] + p->linesize[0] * y;
851 
852  if (s->predictor == PLANE && s->interlaced < y) {
853  s->llvidencdsp.diff_bytes(s->temp[1], ydst, ydst - fake_ystride, width);
854 
855  lefty = sub_left_prediction(s, s->temp[0], s->temp[1], width , lefty);
856  } else {
857  lefty = sub_left_prediction(s, s->temp[0], ydst, width , lefty);
858  }
859  encode_gray_bitstream(s, width);
860  y++;
861  if (y >= height) break;
862  }
863 
864  ydst = p->data[0] + p->linesize[0] * y;
865  udst = p->data[1] + p->linesize[1] * cy;
866  vdst = p->data[2] + p->linesize[2] * cy;
867 
868  if (s->predictor == PLANE && s->interlaced < cy) {
869  s->llvidencdsp.diff_bytes(s->temp[1], ydst, ydst - fake_ystride, width);
870  s->llvidencdsp.diff_bytes(s->temp[2], udst, udst - fake_ustride, width2);
871  s->llvidencdsp.diff_bytes(s->temp[2] + width2, vdst, vdst - fake_vstride, width2);
872 
873  lefty = sub_left_prediction(s, s->temp[0], s->temp[1], width , lefty);
874  leftu = sub_left_prediction(s, s->temp[1], s->temp[2], width2, leftu);
875  leftv = sub_left_prediction(s, s->temp[2], s->temp[2] + width2, width2, leftv);
876  } else {
877  lefty = sub_left_prediction(s, s->temp[0], ydst, width , lefty);
878  leftu = sub_left_prediction(s, s->temp[1], udst, width2, leftu);
879  leftv = sub_left_prediction(s, s->temp[2], vdst, width2, leftv);
880  }
881 
882  encode_422_bitstream(s, 0, width);
883  }
884  }
885  } else if(avctx->pix_fmt == AV_PIX_FMT_RGB32) {
886  uint8_t *data = p->data[0] + (height - 1) * p->linesize[0];
887  const int stride = -p->linesize[0];
888  const int fake_stride = -fake_ystride;
889  int y;
890  int leftr, leftg, leftb, lefta;
891 
892  put_bits(&s->pb, 8, lefta = data[A]);
893  put_bits(&s->pb, 8, leftr = data[R]);
894  put_bits(&s->pb, 8, leftg = data[G]);
895  put_bits(&s->pb, 8, leftb = data[B]);
896 
897  sub_left_prediction_bgr32(s, s->temp[0], data + 4, width - 1,
898  &leftr, &leftg, &leftb, &lefta);
899  encode_bgra_bitstream(s, width - 1, 4);
900 
901  for (y = 1; y < s->height; y++) {
902  uint8_t *dst = data + y*stride;
903  if (s->predictor == PLANE && s->interlaced < y) {
904  s->llvidencdsp.diff_bytes(s->temp[1], dst, dst - fake_stride, width * 4);
905  sub_left_prediction_bgr32(s, s->temp[0], s->temp[1], width,
906  &leftr, &leftg, &leftb, &lefta);
907  } else {
908  sub_left_prediction_bgr32(s, s->temp[0], dst, width,
909  &leftr, &leftg, &leftb, &lefta);
910  }
911  encode_bgra_bitstream(s, width, 4);
912  }
913  } else if (avctx->pix_fmt == AV_PIX_FMT_RGB24) {
914  uint8_t *data = p->data[0] + (height - 1) * p->linesize[0];
915  const int stride = -p->linesize[0];
916  const int fake_stride = -fake_ystride;
917  int y;
918  int leftr, leftg, leftb;
919 
920  put_bits(&s->pb, 8, leftr = data[0]);
921  put_bits(&s->pb, 8, leftg = data[1]);
922  put_bits(&s->pb, 8, leftb = data[2]);
923  put_bits(&s->pb, 8, 0);
924 
925  sub_left_prediction_rgb24(s, s->temp[0], data + 3, width - 1,
926  &leftr, &leftg, &leftb);
927  encode_bgra_bitstream(s, width-1, 3);
928 
929  for (y = 1; y < s->height; y++) {
930  uint8_t *dst = data + y * stride;
931  if (s->predictor == PLANE && s->interlaced < y) {
932  s->llvidencdsp.diff_bytes(s->temp[1], dst, dst - fake_stride,
933  width * 3);
934  sub_left_prediction_rgb24(s, s->temp[0], s->temp[1], width,
935  &leftr, &leftg, &leftb);
936  } else {
937  sub_left_prediction_rgb24(s, s->temp[0], dst, width,
938  &leftr, &leftg, &leftb);
939  }
940  encode_bgra_bitstream(s, width, 3);
941  }
942  } else if (s->version > 2) {
943  int plane;
944  for (plane = 0; plane < 1 + 2*s->chroma + s->alpha; plane++) {
945  int left, y;
946  int w = width;
947  int h = height;
948  int fake_stride = fake_ystride;
949 
950  if (s->chroma && (plane == 1 || plane == 2)) {
951  w >>= s->chroma_h_shift;
952  h >>= s->chroma_v_shift;
953  fake_stride = plane == 1 ? fake_ustride : fake_vstride;
954  }
955 
956  left = sub_left_prediction(s, s->temp[0], p->data[plane], w , 0);
957 
958  encode_plane_bitstream(s, w, plane);
959 
960  if (s->predictor==MEDIAN) {
961  int lefttop;
962  y = 1;
963  if (s->interlaced) {
964  left = sub_left_prediction(s, s->temp[0], p->data[plane] + p->linesize[plane], w , left);
965 
966  encode_plane_bitstream(s, w, plane);
967  y++;
968  }
969 
970  lefttop = p->data[plane][0];
971 
972  for (; y < h; y++) {
973  uint8_t *dst = p->data[plane] + p->linesize[plane] * y;
974 
975  sub_median_prediction(s, s->temp[0], dst - fake_stride, dst, w , &left, &lefttop);
976 
977  encode_plane_bitstream(s, w, plane);
978  }
979  } else {
980  for (y = 1; y < h; y++) {
981  uint8_t *dst = p->data[plane] + p->linesize[plane] * y;
982 
983  if (s->predictor == PLANE && s->interlaced < y) {
984  diff_bytes(s, s->temp[1], dst, dst - fake_stride, w);
985 
986  left = sub_left_prediction(s, s->temp[0], s->temp[1], w , left);
987  } else {
988  left = sub_left_prediction(s, s->temp[0], dst, w , left);
989  }
990 
991  encode_plane_bitstream(s, w, plane);
992  }
993  }
994  }
995  } else {
996  av_log(avctx, AV_LOG_ERROR, "Format not supported!\n");
997  }
998  emms_c();
999 
1000  size += (put_bits_count(&s->pb) + 31) / 8;
1001  put_bits(&s->pb, 16, 0);
1002  put_bits(&s->pb, 15, 0);
1003  size /= 4;
1004 
1005  if ((s->flags & AV_CODEC_FLAG_PASS1) && (s->picture_number & 31) == 0) {
1006  int j;
1007  char *p = avctx->stats_out;
1008  char *end = p + STATS_OUT_SIZE;
1009  for (i = 0; i < 4; i++) {
1010  for (j = 0; j < s->vlc_n; j++) {
1011  snprintf(p, end-p, "%"PRIu64" ", s->stats[i][j]);
1012  p += strlen(p);
1013  s->stats[i][j]= 0;
1014  }
1015  snprintf(p, end-p, "\n");
1016  p++;
1017  if (end <= p)
1018  return AVERROR(ENOMEM);
1019  }
1020  } else if (avctx->stats_out)
1021  avctx->stats_out[0] = '\0';
1022  if (!(s->avctx->flags2 & AV_CODEC_FLAG2_NO_OUTPUT)) {
1023  flush_put_bits(&s->pb);
1024  s->bdsp.bswap_buf((uint32_t *) pkt->data, (uint32_t *) pkt->data, size);
1025  }
1026 
1027  s->picture_number++;
1028 
1029  pkt->size = size * 4;
1030  pkt->flags |= AV_PKT_FLAG_KEY;
1031  *got_packet = 1;
1032 
1033  return 0;
1034 }
1035 
1037 {
1038  HYuvContext *s = avctx->priv_data;
1039 
1041 
1042  av_freep(&avctx->extradata);
1043  av_freep(&avctx->stats_out);
1044 
1045  return 0;
1046 }
1047 
1048 #define OFFSET(x) offsetof(HYuvContext, x)
1049 #define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM
1050 
1051 #define COMMON_OPTIONS \
1052  { "non_deterministic", "Allow multithreading for e.g. context=1 at the expense of determinism", \
1053  OFFSET(non_determ), AV_OPT_TYPE_BOOL, { .i64 = 1 }, \
1054  0, 1, VE }, \
1055  { "pred", "Prediction method", OFFSET(predictor), AV_OPT_TYPE_INT, { .i64 = LEFT }, LEFT, MEDIAN, VE, "pred" }, \
1056  { "left", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = LEFT }, INT_MIN, INT_MAX, VE, "pred" }, \
1057  { "plane", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = PLANE }, INT_MIN, INT_MAX, VE, "pred" }, \
1058  { "median", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = MEDIAN }, INT_MIN, INT_MAX, VE, "pred" }, \
1059 
1060 static const AVOption normal_options[] = {
1062  { NULL },
1063 };
1064 
1065 static const AVOption ff_options[] = {
1067  { "context", "Set per-frame huffman tables", OFFSET(context), AV_OPT_TYPE_INT, { .i64 = 0 }, 0, 1, VE },
1068  { NULL },
1069 };
1070 
1071 static const AVClass normal_class = {
1072  .class_name = "huffyuv",
1073  .item_name = av_default_item_name,
1074  .option = normal_options,
1075  .version = LIBAVUTIL_VERSION_INT,
1076 };
1077 
1078 static const AVClass ff_class = {
1079  .class_name = "ffvhuff",
1080  .item_name = av_default_item_name,
1081  .option = ff_options,
1082  .version = LIBAVUTIL_VERSION_INT,
1083 };
1084 
1086  .name = "huffyuv",
1087  .long_name = NULL_IF_CONFIG_SMALL("Huffyuv / HuffYUV"),
1088  .type = AVMEDIA_TYPE_VIDEO,
1089  .id = AV_CODEC_ID_HUFFYUV,
1090  .priv_data_size = sizeof(HYuvContext),
1091  .init = encode_init,
1092  .encode2 = encode_frame,
1093  .close = encode_end,
1094  .capabilities = AV_CODEC_CAP_FRAME_THREADS,
1095  .priv_class = &normal_class,
1096  .pix_fmts = (const enum AVPixelFormat[]){
1099  },
1100  .caps_internal = FF_CODEC_CAP_INIT_THREADSAFE |
1102 };
1103 
1104 #if CONFIG_FFVHUFF_ENCODER
1106  .name = "ffvhuff",
1107  .long_name = NULL_IF_CONFIG_SMALL("Huffyuv FFmpeg variant"),
1108  .type = AVMEDIA_TYPE_VIDEO,
1109  .id = AV_CODEC_ID_FFVHUFF,
1110  .priv_data_size = sizeof(HYuvContext),
1111  .init = encode_init,
1112  .encode2 = encode_frame,
1113  .close = encode_end,
1114  .capabilities = AV_CODEC_CAP_FRAME_THREADS,
1115  .priv_class = &ff_class,
1116  .pix_fmts = (const enum AVPixelFormat[]){
1132  },
1133  .caps_internal = FF_CODEC_CAP_INIT_THREADSAFE |
1135 };
1136 #endif
#define FF_CODEC_CAP_INIT_CLEANUP
The codec allows calling the close function for deallocation even if the init function returned a fai...
Definition: internal.h:48
#define AV_CODEC_FLAG_INTERLACED_ME
interlaced motion estimation
Definition: avcodec.h:342
#define FF_COMPLIANCE_EXPERIMENTAL
Allow nonstandardized experimental things.
Definition: avcodec.h:1594
#define NULL
Definition: coverity.c:32
const struct AVCodec * codec
Definition: avcodec.h:535
#define AV_PIX_FMT_YUVA422P16
Definition: pixfmt.h:440
#define AV_PIX_FMT_YUVA422P9
Definition: pixfmt.h:432
int size
const AVPixFmtDescriptor * av_pix_fmt_desc_get(enum AVPixelFormat pix_fmt)
Definition: pixdesc.c:2549
This structure describes decoded (raw) audio or video data.
Definition: frame.h:300
static av_cold int encode_init(AVCodecContext *avctx)
Definition: huffyuvenc.c:202
AVOption.
Definition: opt.h:246
#define AV_PIX_FMT_YUVA420P10
Definition: pixfmt.h:434
#define AV_PIX_FMT_YUV444P14
Definition: pixfmt.h:407
#define AV_PIX_FMT_YUVA422P10
Definition: pixfmt.h:435
int bitstream_bpp
Definition: huffyuv.h:63
planar YUV 4:4:4, 24bpp, (1 Cr & Cb sample per 1x1 Y samples)
Definition: pixfmt.h:71
static void put_bits(Jpeg2000EncoderContext *s, int val, int n)
put n times val bit
Definition: j2kenc.c:208
#define LIBAVUTIL_VERSION_INT
Definition: version.h:85
packed RGB 8:8:8, 24bpp, RGBRGB...
Definition: pixfmt.h:68
#define STATEND
else temp
Definition: vf_mcdeint.c:256
const char * g
Definition: vf_curves.c:115
const char * desc
Definition: nvenc.c:79
static av_cold int init(AVCodecContext *avctx)
Definition: avrndec.c:35
planar GBR 4:4:4 24bpp
Definition: pixfmt.h:168
int size
Definition: packet.h:356
const char * b
Definition: vf_curves.c:116
#define AV_PIX_FMT_GBRP10
Definition: pixfmt.h:413
const char * av_default_item_name(void *ptr)
Return the context name.
Definition: log.c:235
static int encode_plane_bitstream(HYuvContext *s, int width, int plane)
Definition: huffyuvenc.c:494
enum AVPixelFormat pix_fmt
Pixel format, see AV_PIX_FMT_xxx.
Definition: avcodec.h:736
#define AV_PIX_FMT_YUV420P12
Definition: pixfmt.h:401
char * stats_in
pass2 encoding statistics input buffer Concatenated stuff from stats_out of pass1 should be placed he...
Definition: avcodec.h:1553
#define MAX_VLC_N
Definition: huffyuv.h:47
int context
Definition: huffyuv.h:77
static AVPacket pkt
LLVidEncDSPContext llvidencdsp
Definition: huffyuv.h:93
int stride
Definition: mace.c:144
AVCodec.
Definition: codec.h:190
int height
Definition: huffyuv.h:75
#define LOAD_GBRA
av_cold void ff_huffyuvencdsp_init(HuffYUVEncDSPContext *c, AVCodecContext *avctx)
Definition: huffyuvencdsp.c:71
av_cold void ff_llvidencdsp_init(LLVidEncDSPContext *c)
const char * class_name
The name of the class; usually it is the same name as the context structure type to which the AVClass...
Definition: log.h:72
#define av_assert0(cond)
assert() equivalent, that is always enabled.
Definition: avassert.h:37
int ff_alloc_packet2(AVCodecContext *avctx, AVPacket *avpkt, int64_t size, int64_t min_size)
Check AVPacket size and/or allocate data.
Definition: encode.c:32
#define FF_CODEC_CAP_INIT_THREADSAFE
The codec does not modify any global variables in the init function, allowing to call the init functi...
Definition: internal.h:40
planar YUV 4:2:0, 20bpp, (1 Cr & Cb sample per 2x2 Y & A samples)
Definition: pixfmt.h:101
AVComponentDescriptor comp[4]
Parameters that describe how pixels are packed.
Definition: pixdesc.h:117
uint8_t
#define av_cold
Definition: attributes.h:88
#define AV_PIX_FMT_FLAG_ALPHA
The pixel format has an alpha channel.
Definition: pixdesc.h:177
AVOptions.
void(* bswap_buf)(uint32_t *dst, const uint32_t *src, int w)
Definition: bswapdsp.h:25
#define STATEND_16
static av_cold int end(AVCodecContext *avctx)
Definition: avrndec.c:92
int bps
Definition: huffyuv.h:67
#define emms_c()
Definition: internal.h:55
uint8_t * extradata
some codecs need / can use extradata like Huffman tables.
Definition: avcodec.h:627
#define u(width, name, range_min, range_max)
Definition: cbs_h2645.c:262
#define AV_PIX_FMT_YUVA420P9
Definition: pixfmt.h:431
#define AV_PIX_FMT_GBRP9
Definition: pixfmt.h:412
static void sub_median_prediction(HYuvContext *s, uint8_t *dst, const uint8_t *src1, const uint8_t *src2, int w, int *left, int *left_top)
Definition: huffyuvenc.c:146
void(* diff_bytes)(uint8_t *dst, const uint8_t *src1, const uint8_t *src2, intptr_t w)
const char data[16]
Definition: mxf.c:91
#define height
uint8_t * data
Definition: packet.h:355
attribute_deprecated int context_model
Definition: avcodec.h:1449
#define STATS_OUT_SIZE
int vlc_n
Definition: huffyuv.h:69
#define AV_PIX_FMT_YUV444P16
Definition: pixfmt.h:410
static void sub_left_prediction_rgb24(HYuvContext *s, uint8_t *dst, uint8_t *src, int w, int *red, int *green, int *blue)
Definition: huffyuvenc.c:118
void(* sub_hfyu_median_pred_int16)(uint16_t *dst, const uint16_t *src1, const uint16_t *src2, unsigned mask, int w, int *left, int *left_top)
Definition: huffyuvencdsp.h:32
int chroma_h_shift
Definition: huffyuv.h:73
int bits_per_coded_sample
bits per sample/pixel from the demuxer (needed for huffyuv).
Definition: avcodec.h:1750
#define LOAD2
#define AV_PIX_FMT_YUV422P12
Definition: pixfmt.h:402
char * stats_out
pass1 encoding statistics output buffer
Definition: avcodec.h:1545
#define AV_PIX_FMT_YUVA420P16
Definition: pixfmt.h:439
#define A(x)
Definition: vp56_arith.h:28
#define AV_INPUT_BUFFER_MIN_SIZE
minimum encoding buffer size Used to avoid some checks during header writing.
Definition: avcodec.h:222
#define av_log(a,...)
#define AV_PKT_FLAG_KEY
The packet contains a keyframe.
Definition: packet.h:388
uint8_t len[4][MAX_VLC_N]
Definition: huffyuv.h:83
#define src
Definition: vp8dsp.c:254
#define MAX_N
Definition: huffyuv.h:46
static int encode_frame(AVCodecContext *avctx, AVPacket *pkt, const AVFrame *pict, int *got_packet)
Definition: huffyuvenc.c:752
#define LOAD2_14
av_cold int ff_huffyuv_alloc_temp(HYuvContext *s)
Definition: huffyuv.c:58
enum AVCodecID id
Definition: codec.h:204
planar YUV 4:2:2 24bpp, (1 Cr & Cb sample per 2x1 Y & A samples)
Definition: pixfmt.h:176
#define i(width, name, range_min, range_max)
Definition: cbs_h2645.c:269
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
Definition: log.h:176
void(* sub_median_pred)(uint8_t *dst, const uint8_t *src1, const uint8_t *src2, intptr_t w, int *left, int *left_top)
Subtract HuffYUV&#39;s variant of median prediction.
#define R
Definition: huffyuvdsp.h:34
int chroma_v_shift
Definition: huffyuv.h:74
Definition: huffyuv.h:51
av_cold void ff_huffyuv_common_end(HYuvContext *s)
Definition: huffyuv.c:86
AVCodec ff_ffvhuff_encoder
static const uint16_t mask[17]
Definition: lzw.c:38
#define AVERROR(e)
Definition: error.h:43
int flags
Definition: huffyuv.h:76
#define AV_PIX_FMT_FLAG_RGB
The pixel format contains RGB-like data (as opposed to YUV/grayscale).
Definition: pixdesc.h:148
int av_pix_fmt_get_chroma_sub_sample(enum AVPixelFormat pix_fmt, int *h_shift, int *v_shift)
Utility function to access log2_chroma_w log2_chroma_h from the pixel format AVPixFmtDescriptor.
Definition: pixdesc.c:2577
#define B
Definition: huffyuvdsp.h:32
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification. ...
Definition: internal.h:188
const char * r
Definition: vf_curves.c:114
static const AVClass ff_class
Definition: huffyuvenc.c:1078
#define AV_PIX_FMT_YUVA444P16
Definition: pixfmt.h:441
int flags
AV_CODEC_FLAG_*.
Definition: avcodec.h:606
uint8_t * buf
Definition: put_bits.h:38
void * av_mallocz(size_t size)
Allocate a memory block with alignment suitable for all memory accesses (including vectors if availab...
Definition: mem.c:237
const char * name
Name of the codec implementation.
Definition: codec.h:197
#define AV_PIX_FMT_YUV444P10
Definition: pixfmt.h:400
static const AVClass normal_class
Definition: huffyuvenc.c:1071
int chroma
Definition: huffyuv.h:71
static const uint8_t offset[127][2]
Definition: vf_spp.c:93
#define COMMON_OPTIONS
Definition: huffyuvenc.c:1051
huffyuv codec for libavcodec.
#define AV_CODEC_CAP_FRAME_THREADS
Codec supports frame-level multithreading.
Definition: codec.h:106
int flags
A combination of AV_PKT_FLAG values.
Definition: packet.h:361
static int put_bits_count(PutBitContext *s)
Definition: put_bits.h:67
planar YUV 4:2:2, 16bpp, (1 Cr & Cb sample per 2x1 Y samples)
Definition: pixfmt.h:70
#define WRITE_GBRA
uint64_t flags
Combination of AV_PIX_FMT_FLAG_...
Definition: pixdesc.h:106
#define AV_PIX_FMT_YUV422P9
Definition: pixfmt.h:395
static const struct @315 planes[]
uint8_t nb_components
The number of components each pixel has, (1-4)
Definition: pixdesc.h:83
#define WRITE2
int decorrelate
Definition: huffyuv.h:62
enum AVPictureType pict_type
Picture type of the frame.
Definition: frame.h:383
#define AV_PIX_FMT_GBRP16
Definition: pixfmt.h:416
#define AV_PIX_FMT_GRAY16
Definition: pixfmt.h:381
#define FFMIN(a, b)
Definition: common.h:96
int width
Definition: huffyuv.h:75
AVCodec ff_huffyuv_encoder
Definition: huffyuvenc.c:1085
void(* diff_int16)(uint16_t *dst, const uint16_t *src1, const uint16_t *src2, unsigned mask, int w)
Definition: huffyuvencdsp.h:27
#define width
uint8_t w
Definition: llviddspenc.c:38
#define AV_CODEC_FLAG_PASS1
Use internal 2pass ratecontrol in first pass mode.
Definition: avcodec.h:296
int ff_huffyuv_generate_bits_table(uint32_t *dst, const uint8_t *len_table, int n)
Definition: huffyuv.c:39
#define s(width, name)
Definition: cbs_vp9.c:257
#define AV_PIX_FMT_YUVA444P10
Definition: pixfmt.h:436
uint8_t * temp[3]
Definition: huffyuv.h:80
static av_cold int encode_end(AVCodecContext *avctx)
Definition: huffyuvenc.c:1036
#define AV_PIX_FMT_YUV444P9
Definition: pixfmt.h:396
#define AV_PIX_FMT_GBRP14
Definition: pixfmt.h:415
int alpha
Definition: huffyuv.h:70
#define AV_PIX_FMT_YUV420P16
Definition: pixfmt.h:408
#define src1
Definition: h264pred.c:139
#define AV_LOG_INFO
Standard information.
Definition: log.h:187
#define AV_PIX_FMT_YUV420P14
Definition: pixfmt.h:405
int picture_number
Definition: huffyuv.h:78
int ff_huff_gen_len_table(uint8_t *dst, const uint64_t *stats, int stats_size, int skip0)
Definition: huffman.c:58
static int sub_left_prediction(HYuvContext *s, uint8_t *dst, const uint8_t *src, int w, int left)
Definition: huffyuvenc.c:51
Libavcodec external API header.
static int encode_422_bitstream(HYuvContext *s, int offset, int count)
Definition: huffyuvenc.c:439
attribute_deprecated int prediction_method
Definition: avcodec.h:885
int yuv
Definition: huffyuv.h:72
int linesize[AV_NUM_DATA_POINTERS]
For video, size in bytes of each picture line.
Definition: frame.h:331
static const AVOption ff_options[]
Definition: huffyuvenc.c:1065
planar YUV 4:4:4 32bpp, (1 Cr & Cb sample per 1x1 Y & A samples)
Definition: pixfmt.h:177
Descriptor that unambiguously describes how the bits of a pixel are stored in the up to 4 data planes...
Definition: pixdesc.h:81
static const int16_t alpha[]
Definition: ilbcdata.h:55
main external API structure.
Definition: avcodec.h:526
#define AV_PIX_FMT_RGB32
Definition: pixfmt.h:370
#define STAT2
uint8_t * buf_end
Definition: put_bits.h:38
int interlaced
Definition: huffyuv.h:61
int extradata_size
Definition: avcodec.h:628
#define AV_PIX_FMT_YUV420P10
Definition: pixfmt.h:397
planar YUV 4:1:0, 9bpp, (1 Cr & Cb sample per 4x4 Y samples)
Definition: pixfmt.h:72
Describe the class of an AVClass context structure.
Definition: log.h:67
int index
Definition: gxfenc.c:89
#define WRITEEND
huffman tree builder and VLC generator
#define STAT2_16
#define src0
Definition: h264pred.c:138
static int encode_bgra_bitstream(HYuvContext *s, int count, int planes)
Definition: huffyuvenc.c:701
#define LOAD4
#define STAT_BGRA
#define AV_PIX_FMT_YUV420P9
Definition: pixfmt.h:394
#define snprintf
Definition: snprintf.h:34
static enum AVPixelFormat pix_fmts[]
Definition: libkvazaar.c:275
#define AV_PIX_FMT_YUV422P14
Definition: pixfmt.h:406
#define AV_PIX_FMT_GBRP12
Definition: pixfmt.h:414
HuffYUVEncDSPContext hencdsp
Definition: huffyuv.h:91
int version
Definition: huffyuv.h:64
#define AV_PIX_FMT_YUV422P10
Definition: pixfmt.h:398
#define AV_PIX_FMT_YUV444P12
Definition: pixfmt.h:404
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
Definition: frame.h:314
Predictor predictor
Definition: huffyuv.h:58
static void diff_bytes(HYuvContext *s, uint8_t *dst, const uint8_t *src0, const uint8_t *src1, int w)
Definition: huffyuvenc.c:41
#define v0
Definition: regdef.h:26
AVCodecContext * avctx
Definition: huffyuv.h:57
#define WRITE2_16
PutBitContext pb
Definition: huffyuv.h:60
planar YUV 4:2:0, 12bpp, (1 Cr & Cb sample per 2x2 Y samples)
Definition: pixfmt.h:66
Y , 8bpp.
Definition: pixfmt.h:74
Definition: huffyuv.h:52
#define OFFSET(x)
Definition: huffyuvenc.c:1048
#define FF_DISABLE_DEPRECATION_WARNINGS
Definition: internal.h:84
common internal api header.
static void flush_put_bits(PutBitContext *s)
Pad the end of the output stream with zeros.
Definition: put_bits.h:101
static int store_huffman_tables(HYuvContext *s, uint8_t *buf)
Definition: huffyuvenc.c:180
#define VE
Definition: huffyuvenc.c:1049
#define G
Definition: huffyuvdsp.h:33
planar GBRA 4:4:4:4 32bpp
Definition: pixfmt.h:215
static int store_table(HYuvContext *s, const uint8_t *len, uint8_t *buf)
Definition: huffyuvenc.c:155
#define LOAD2_16
#define AV_CODEC_FLAG2_NO_OUTPUT
Skip bitstream encoding.
Definition: avcodec.h:352
#define AV_PIX_FMT_YUVA444P9
Definition: pixfmt.h:433
attribute_deprecated AVFrame * coded_frame
the picture in the bitstream
Definition: avcodec.h:1776
planar YUV 4:1:1, 12bpp, (1 Cr & Cb sample per 4x1 Y samples)
Definition: pixfmt.h:73
static int encode_gray_bitstream(HYuvContext *s, int count)
Definition: huffyuvenc.c:656
static void init_put_bits(PutBitContext *s, uint8_t *buffer, int buffer_size)
Initialize the PutBitContext s.
Definition: put_bits.h:48
static void sub_left_prediction_bgr32(HYuvContext *s, uint8_t *dst, const uint8_t *src, int w, int *red, int *green, int *blue, int *alpha)
Definition: huffyuvenc.c:82
av_cold void ff_huffyuv_common_init(AVCodecContext *avctx)
Definition: huffyuv.c:71
#define AV_CODEC_FLAG_PASS2
Use internal 2pass ratecontrol in second pass mode.
Definition: avcodec.h:300
void * priv_data
Definition: avcodec.h:553
#define FF_ENABLE_DEPRECATION_WARNINGS
Definition: internal.h:85
int len
int key_frame
1 -> keyframe, 0-> not
Definition: frame.h:378
int flags2
AV_CODEC_FLAG2_*.
Definition: avcodec.h:613
#define WRITEEND_16
#define LOADEND_16
#define av_freep(p)
planar YUV 4:4:0 (1 Cr & Cb sample per 1x2 Y samples)
Definition: pixfmt.h:99
#define LOADEND
uint32_t bits[4][MAX_VLC_N]
Definition: huffyuv.h:84
uint64_t stats[4][MAX_VLC_N]
Definition: huffyuv.h:82
static const AVOption normal_options[]
Definition: huffyuvenc.c:1060
int depth
Number of bits in the component.
Definition: pixdesc.h:58
#define LOADEND_14
AVPixelFormat
Pixel format.
Definition: pixfmt.h:64
static double val(void *priv, double ch)
Definition: aeval.c:76
This structure stores compressed data.
Definition: packet.h:332
BswapDSPContext bdsp
Definition: huffyuv.h:89
#define AV_PIX_FMT_FLAG_PLANAR
At least one pixel component is not in the first data plane.
Definition: pixdesc.h:144
int strict_std_compliance
strictly follow the standard (MPEG-4, ...).
Definition: avcodec.h:1589
#define AV_PIX_FMT_YUV422P16
Definition: pixfmt.h:409
for(j=16;j >0;--j)
bitstream writer API