FFmpeg  4.3.6
alsdec.c
Go to the documentation of this file.
1 /*
2  * MPEG-4 ALS decoder
3  * Copyright (c) 2009 Thilo Borgmann <thilo.borgmann _at_ mail.de>
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with FFmpeg; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21 
22 /**
23  * @file
24  * MPEG-4 ALS decoder
25  * @author Thilo Borgmann <thilo.borgmann _at_ mail.de>
26  */
27 
28 #include <inttypes.h>
29 
30 #include "avcodec.h"
31 #include "get_bits.h"
32 #include "unary.h"
33 #include "mpeg4audio.h"
34 #include "bgmc.h"
35 #include "bswapdsp.h"
36 #include "internal.h"
37 #include "mlz.h"
38 #include "libavutil/samplefmt.h"
39 #include "libavutil/crc.h"
41 #include "libavutil/intfloat.h"
42 #include "libavutil/intreadwrite.h"
43 
44 #include <stdint.h>
45 
46 /** Rice parameters and corresponding index offsets for decoding the
47  * indices of scaled PARCOR values. The table chosen is set globally
48  * by the encoder and stored in ALSSpecificConfig.
49  */
50 static const int8_t parcor_rice_table[3][20][2] = {
51  { {-52, 4}, {-29, 5}, {-31, 4}, { 19, 4}, {-16, 4},
52  { 12, 3}, { -7, 3}, { 9, 3}, { -5, 3}, { 6, 3},
53  { -4, 3}, { 3, 3}, { -3, 2}, { 3, 2}, { -2, 2},
54  { 3, 2}, { -1, 2}, { 2, 2}, { -1, 2}, { 2, 2} },
55  { {-58, 3}, {-42, 4}, {-46, 4}, { 37, 5}, {-36, 4},
56  { 29, 4}, {-29, 4}, { 25, 4}, {-23, 4}, { 20, 4},
57  {-17, 4}, { 16, 4}, {-12, 4}, { 12, 3}, {-10, 4},
58  { 7, 3}, { -4, 4}, { 3, 3}, { -1, 3}, { 1, 3} },
59  { {-59, 3}, {-45, 5}, {-50, 4}, { 38, 4}, {-39, 4},
60  { 32, 4}, {-30, 4}, { 25, 3}, {-23, 3}, { 20, 3},
61  {-20, 3}, { 16, 3}, {-13, 3}, { 10, 3}, { -7, 3},
62  { 3, 3}, { 0, 3}, { -1, 3}, { 2, 3}, { -1, 2} }
63 };
64 
65 
66 /** Scaled PARCOR values used for the first two PARCOR coefficients.
67  * To be indexed by the Rice coded indices.
68  * Generated by: parcor_scaled_values[i] = 32 + ((i * (i+1)) << 7) - (1 << 20)
69  * Actual values are divided by 32 in order to be stored in 16 bits.
70  */
71 static const int16_t parcor_scaled_values[] = {
72  -1048544 / 32, -1048288 / 32, -1047776 / 32, -1047008 / 32,
73  -1045984 / 32, -1044704 / 32, -1043168 / 32, -1041376 / 32,
74  -1039328 / 32, -1037024 / 32, -1034464 / 32, -1031648 / 32,
75  -1028576 / 32, -1025248 / 32, -1021664 / 32, -1017824 / 32,
76  -1013728 / 32, -1009376 / 32, -1004768 / 32, -999904 / 32,
77  -994784 / 32, -989408 / 32, -983776 / 32, -977888 / 32,
78  -971744 / 32, -965344 / 32, -958688 / 32, -951776 / 32,
79  -944608 / 32, -937184 / 32, -929504 / 32, -921568 / 32,
80  -913376 / 32, -904928 / 32, -896224 / 32, -887264 / 32,
81  -878048 / 32, -868576 / 32, -858848 / 32, -848864 / 32,
82  -838624 / 32, -828128 / 32, -817376 / 32, -806368 / 32,
83  -795104 / 32, -783584 / 32, -771808 / 32, -759776 / 32,
84  -747488 / 32, -734944 / 32, -722144 / 32, -709088 / 32,
85  -695776 / 32, -682208 / 32, -668384 / 32, -654304 / 32,
86  -639968 / 32, -625376 / 32, -610528 / 32, -595424 / 32,
87  -580064 / 32, -564448 / 32, -548576 / 32, -532448 / 32,
88  -516064 / 32, -499424 / 32, -482528 / 32, -465376 / 32,
89  -447968 / 32, -430304 / 32, -412384 / 32, -394208 / 32,
90  -375776 / 32, -357088 / 32, -338144 / 32, -318944 / 32,
91  -299488 / 32, -279776 / 32, -259808 / 32, -239584 / 32,
92  -219104 / 32, -198368 / 32, -177376 / 32, -156128 / 32,
93  -134624 / 32, -112864 / 32, -90848 / 32, -68576 / 32,
94  -46048 / 32, -23264 / 32, -224 / 32, 23072 / 32,
95  46624 / 32, 70432 / 32, 94496 / 32, 118816 / 32,
96  143392 / 32, 168224 / 32, 193312 / 32, 218656 / 32,
97  244256 / 32, 270112 / 32, 296224 / 32, 322592 / 32,
98  349216 / 32, 376096 / 32, 403232 / 32, 430624 / 32,
99  458272 / 32, 486176 / 32, 514336 / 32, 542752 / 32,
100  571424 / 32, 600352 / 32, 629536 / 32, 658976 / 32,
101  688672 / 32, 718624 / 32, 748832 / 32, 779296 / 32,
102  810016 / 32, 840992 / 32, 872224 / 32, 903712 / 32,
103  935456 / 32, 967456 / 32, 999712 / 32, 1032224 / 32
104 };
105 
106 
107 /** Gain values of p(0) for long-term prediction.
108  * To be indexed by the Rice coded indices.
109  */
110 static const uint8_t ltp_gain_values [4][4] = {
111  { 0, 8, 16, 24},
112  {32, 40, 48, 56},
113  {64, 70, 76, 82},
114  {88, 92, 96, 100}
115 };
116 
117 
118 /** Inter-channel weighting factors for multi-channel correlation.
119  * To be indexed by the Rice coded indices.
120  */
121 static const int16_t mcc_weightings[] = {
122  204, 192, 179, 166, 153, 140, 128, 115,
123  102, 89, 76, 64, 51, 38, 25, 12,
124  0, -12, -25, -38, -51, -64, -76, -89,
125  -102, -115, -128, -140, -153, -166, -179, -192
126 };
127 
128 
129 /** Tail codes used in arithmetic coding using block Gilbert-Moore codes.
130  */
131 static const uint8_t tail_code[16][6] = {
132  { 74, 44, 25, 13, 7, 3},
133  { 68, 42, 24, 13, 7, 3},
134  { 58, 39, 23, 13, 7, 3},
135  {126, 70, 37, 19, 10, 5},
136  {132, 70, 37, 20, 10, 5},
137  {124, 70, 38, 20, 10, 5},
138  {120, 69, 37, 20, 11, 5},
139  {116, 67, 37, 20, 11, 5},
140  {108, 66, 36, 20, 10, 5},
141  {102, 62, 36, 20, 10, 5},
142  { 88, 58, 34, 19, 10, 5},
143  {162, 89, 49, 25, 13, 7},
144  {156, 87, 49, 26, 14, 7},
145  {150, 86, 47, 26, 14, 7},
146  {142, 84, 47, 26, 14, 7},
147  {131, 79, 46, 26, 14, 7}
148 };
149 
150 
151 enum RA_Flag {
155 };
156 
157 
158 typedef struct ALSSpecificConfig {
159  uint32_t samples; ///< number of samples, 0xFFFFFFFF if unknown
160  int resolution; ///< 000 = 8-bit; 001 = 16-bit; 010 = 24-bit; 011 = 32-bit
161  int floating; ///< 1 = IEEE 32-bit floating-point, 0 = integer
162  int msb_first; ///< 1 = original CRC calculated on big-endian system, 0 = little-endian
163  int frame_length; ///< frame length for each frame (last frame may differ)
164  int ra_distance; ///< distance between RA frames (in frames, 0...255)
165  enum RA_Flag ra_flag; ///< indicates where the size of ra units is stored
166  int adapt_order; ///< adaptive order: 1 = on, 0 = off
167  int coef_table; ///< table index of Rice code parameters
168  int long_term_prediction; ///< long term prediction (LTP): 1 = on, 0 = off
169  int max_order; ///< maximum prediction order (0..1023)
170  int block_switching; ///< number of block switching levels
171  int bgmc; ///< "Block Gilbert-Moore Code": 1 = on, 0 = off (Rice coding only)
172  int sb_part; ///< sub-block partition
173  int joint_stereo; ///< joint stereo: 1 = on, 0 = off
174  int mc_coding; ///< extended inter-channel coding (multi channel coding): 1 = on, 0 = off
175  int chan_config; ///< indicates that a chan_config_info field is present
176  int chan_sort; ///< channel rearrangement: 1 = on, 0 = off
177  int rlslms; ///< use "Recursive Least Square-Least Mean Square" predictor: 1 = on, 0 = off
178  int chan_config_info; ///< mapping of channels to loudspeaker locations. Unused until setting channel configuration is implemented.
179  int *chan_pos; ///< original channel positions
180  int crc_enabled; ///< enable Cyclic Redundancy Checksum
182 
183 
184 typedef struct ALSChannelData {
190  int weighting[6];
192 
193 
194 typedef struct ALSDecContext {
199  const AVCRC *crc_table;
200  uint32_t crc_org; ///< CRC value of the original input data
201  uint32_t crc; ///< CRC value calculated from decoded data
202  unsigned int cur_frame_length; ///< length of the current frame to decode
203  unsigned int frame_id; ///< the frame ID / number of the current frame
204  unsigned int js_switch; ///< if true, joint-stereo decoding is enforced
205  unsigned int cs_switch; ///< if true, channel rearrangement is done
206  unsigned int num_blocks; ///< number of blocks used in the current frame
207  unsigned int s_max; ///< maximum Rice parameter allowed in entropy coding
208  uint8_t *bgmc_lut; ///< pointer at lookup tables used for BGMC
209  int *bgmc_lut_status; ///< pointer at lookup table status flags used for BGMC
210  int ltp_lag_length; ///< number of bits used for ltp lag value
211  int *const_block; ///< contains const_block flags for all channels
212  unsigned int *shift_lsbs; ///< contains shift_lsbs flags for all channels
213  unsigned int *opt_order; ///< contains opt_order flags for all channels
214  int *store_prev_samples; ///< contains store_prev_samples flags for all channels
215  int *use_ltp; ///< contains use_ltp flags for all channels
216  int *ltp_lag; ///< contains ltp lag values for all channels
217  int **ltp_gain; ///< gain values for ltp 5-tap filter for a channel
218  int *ltp_gain_buffer; ///< contains all gain values for ltp 5-tap filter
219  int32_t **quant_cof; ///< quantized parcor coefficients for a channel
220  int32_t *quant_cof_buffer; ///< contains all quantized parcor coefficients
221  int32_t **lpc_cof; ///< coefficients of the direct form prediction filter for a channel
222  int32_t *lpc_cof_buffer; ///< contains all coefficients of the direct form prediction filter
223  int32_t *lpc_cof_reversed_buffer; ///< temporary buffer to set up a reversed versio of lpc_cof_buffer
224  ALSChannelData **chan_data; ///< channel data for multi-channel correlation
225  ALSChannelData *chan_data_buffer; ///< contains channel data for all channels
226  int *reverted_channels; ///< stores a flag for each reverted channel
227  int32_t *prev_raw_samples; ///< contains unshifted raw samples from the previous block
228  int32_t **raw_samples; ///< decoded raw samples for each channel
229  int32_t *raw_buffer; ///< contains all decoded raw samples including carryover samples
230  uint8_t *crc_buffer; ///< buffer of byte order corrected samples used for CRC check
231  MLZ* mlz; ///< masked lz decompression structure
232  SoftFloat_IEEE754 *acf; ///< contains common multiplier for all channels
233  int *last_acf_mantissa; ///< contains the last acf mantissa data of common multiplier for all channels
234  int *shift_value; ///< value by which the binary point is to be shifted for all channels
235  int *last_shift_value; ///< contains last shift value for all channels
236  int **raw_mantissa; ///< decoded mantissa bits of the difference signal
237  unsigned char *larray; ///< buffer to store the output of masked lz decompression
238  int *nbits; ///< contains the number of bits to read for masked lz decompression for all samples
240 } ALSDecContext;
241 
242 
243 typedef struct ALSBlockData {
244  unsigned int block_length; ///< number of samples within the block
245  unsigned int ra_block; ///< if true, this is a random access block
246  int *const_block; ///< if true, this is a constant value block
247  int js_blocks; ///< true if this block contains a difference signal
248  unsigned int *shift_lsbs; ///< shift of values for this block
249  unsigned int *opt_order; ///< prediction order of this block
250  int *store_prev_samples;///< if true, carryover samples have to be stored
251  int *use_ltp; ///< if true, long-term prediction is used
252  int *ltp_lag; ///< lag value for long-term prediction
253  int *ltp_gain; ///< gain values for ltp 5-tap filter
254  int32_t *quant_cof; ///< quantized parcor coefficients
255  int32_t *lpc_cof; ///< coefficients of the direct form prediction
256  int32_t *raw_samples; ///< decoded raw samples / residuals for this block
257  int32_t *prev_raw_samples; ///< contains unshifted raw samples from the previous block
258  int32_t *raw_other; ///< decoded raw samples of the other channel of a channel pair
259 } ALSBlockData;
260 
261 
263 {
264 #ifdef DEBUG
265  AVCodecContext *avctx = ctx->avctx;
266  ALSSpecificConfig *sconf = &ctx->sconf;
267 
268  ff_dlog(avctx, "resolution = %i\n", sconf->resolution);
269  ff_dlog(avctx, "floating = %i\n", sconf->floating);
270  ff_dlog(avctx, "frame_length = %i\n", sconf->frame_length);
271  ff_dlog(avctx, "ra_distance = %i\n", sconf->ra_distance);
272  ff_dlog(avctx, "ra_flag = %i\n", sconf->ra_flag);
273  ff_dlog(avctx, "adapt_order = %i\n", sconf->adapt_order);
274  ff_dlog(avctx, "coef_table = %i\n", sconf->coef_table);
275  ff_dlog(avctx, "long_term_prediction = %i\n", sconf->long_term_prediction);
276  ff_dlog(avctx, "max_order = %i\n", sconf->max_order);
277  ff_dlog(avctx, "block_switching = %i\n", sconf->block_switching);
278  ff_dlog(avctx, "bgmc = %i\n", sconf->bgmc);
279  ff_dlog(avctx, "sb_part = %i\n", sconf->sb_part);
280  ff_dlog(avctx, "joint_stereo = %i\n", sconf->joint_stereo);
281  ff_dlog(avctx, "mc_coding = %i\n", sconf->mc_coding);
282  ff_dlog(avctx, "chan_config = %i\n", sconf->chan_config);
283  ff_dlog(avctx, "chan_sort = %i\n", sconf->chan_sort);
284  ff_dlog(avctx, "RLSLMS = %i\n", sconf->rlslms);
285  ff_dlog(avctx, "chan_config_info = %i\n", sconf->chan_config_info);
286 #endif
287 }
288 
289 
290 /** Read an ALSSpecificConfig from a buffer into the output struct.
291  */
293 {
294  GetBitContext gb;
295  uint64_t ht_size;
296  int i, config_offset;
297  MPEG4AudioConfig m4ac = {0};
298  ALSSpecificConfig *sconf = &ctx->sconf;
299  AVCodecContext *avctx = ctx->avctx;
300  uint32_t als_id, header_size, trailer_size;
301  int ret;
302 
303  if ((ret = init_get_bits8(&gb, avctx->extradata, avctx->extradata_size)) < 0)
304  return ret;
305 
306  config_offset = avpriv_mpeg4audio_get_config2(&m4ac, avctx->extradata,
307  avctx->extradata_size, 1, avctx);
308 
309  if (config_offset < 0)
310  return AVERROR_INVALIDDATA;
311 
312  skip_bits_long(&gb, config_offset);
313 
314  if (get_bits_left(&gb) < (30 << 3))
315  return AVERROR_INVALIDDATA;
316 
317  // read the fixed items
318  als_id = get_bits_long(&gb, 32);
319  avctx->sample_rate = m4ac.sample_rate;
320  skip_bits_long(&gb, 32); // sample rate already known
321  sconf->samples = get_bits_long(&gb, 32);
322  avctx->channels = m4ac.channels;
323  skip_bits(&gb, 16); // number of channels already known
324  skip_bits(&gb, 3); // skip file_type
325  sconf->resolution = get_bits(&gb, 3);
326  sconf->floating = get_bits1(&gb);
327  sconf->msb_first = get_bits1(&gb);
328  sconf->frame_length = get_bits(&gb, 16) + 1;
329  sconf->ra_distance = get_bits(&gb, 8);
330  sconf->ra_flag = get_bits(&gb, 2);
331  sconf->adapt_order = get_bits1(&gb);
332  sconf->coef_table = get_bits(&gb, 2);
333  sconf->long_term_prediction = get_bits1(&gb);
334  sconf->max_order = get_bits(&gb, 10);
335  sconf->block_switching = get_bits(&gb, 2);
336  sconf->bgmc = get_bits1(&gb);
337  sconf->sb_part = get_bits1(&gb);
338  sconf->joint_stereo = get_bits1(&gb);
339  sconf->mc_coding = get_bits1(&gb);
340  sconf->chan_config = get_bits1(&gb);
341  sconf->chan_sort = get_bits1(&gb);
342  sconf->crc_enabled = get_bits1(&gb);
343  sconf->rlslms = get_bits1(&gb);
344  skip_bits(&gb, 5); // skip 5 reserved bits
345  skip_bits1(&gb); // skip aux_data_enabled
346 
347 
348  // check for ALSSpecificConfig struct
349  if (als_id != MKBETAG('A','L','S','\0'))
350  return AVERROR_INVALIDDATA;
351 
352  if (avctx->channels > FF_SANE_NB_CHANNELS) {
353  avpriv_request_sample(avctx, "Huge number of channels\n");
354  return AVERROR_PATCHWELCOME;
355  }
356 
357  ctx->cur_frame_length = sconf->frame_length;
358 
359  // read channel config
360  if (sconf->chan_config)
361  sconf->chan_config_info = get_bits(&gb, 16);
362  // TODO: use this to set avctx->channel_layout
363 
364 
365  // read channel sorting
366  if (sconf->chan_sort && avctx->channels > 1) {
367  int chan_pos_bits = av_ceil_log2(avctx->channels);
368  int bits_needed = avctx->channels * chan_pos_bits + 7;
369  if (get_bits_left(&gb) < bits_needed)
370  return AVERROR_INVALIDDATA;
371 
372  if (!(sconf->chan_pos = av_malloc_array(avctx->channels, sizeof(*sconf->chan_pos))))
373  return AVERROR(ENOMEM);
374 
375  ctx->cs_switch = 1;
376 
377  for (i = 0; i < avctx->channels; i++) {
378  sconf->chan_pos[i] = -1;
379  }
380 
381  for (i = 0; i < avctx->channels; i++) {
382  int idx;
383 
384  idx = get_bits(&gb, chan_pos_bits);
385  if (idx >= avctx->channels || sconf->chan_pos[idx] != -1) {
386  av_log(avctx, AV_LOG_WARNING, "Invalid channel reordering.\n");
387  ctx->cs_switch = 0;
388  break;
389  }
390  sconf->chan_pos[idx] = i;
391  }
392 
393  align_get_bits(&gb);
394  }
395 
396 
397  // read fixed header and trailer sizes,
398  // if size = 0xFFFFFFFF then there is no data field!
399  if (get_bits_left(&gb) < 64)
400  return AVERROR_INVALIDDATA;
401 
402  header_size = get_bits_long(&gb, 32);
403  trailer_size = get_bits_long(&gb, 32);
404  if (header_size == 0xFFFFFFFF)
405  header_size = 0;
406  if (trailer_size == 0xFFFFFFFF)
407  trailer_size = 0;
408 
409  ht_size = ((int64_t)(header_size) + (int64_t)(trailer_size)) << 3;
410 
411 
412  // skip the header and trailer data
413  if (get_bits_left(&gb) < ht_size)
414  return AVERROR_INVALIDDATA;
415 
416  if (ht_size > INT32_MAX)
417  return AVERROR_PATCHWELCOME;
418 
419  skip_bits_long(&gb, ht_size);
420 
421 
422  // initialize CRC calculation
423  if (sconf->crc_enabled) {
424  if (get_bits_left(&gb) < 32)
425  return AVERROR_INVALIDDATA;
426 
429  ctx->crc = 0xFFFFFFFF;
430  ctx->crc_org = ~get_bits_long(&gb, 32);
431  } else
432  skip_bits_long(&gb, 32);
433  }
434 
435 
436  // no need to read the rest of ALSSpecificConfig (ra_unit_size & aux data)
437 
439 
440  return 0;
441 }
442 
443 
444 /** Check the ALSSpecificConfig for unsupported features.
445  */
447 {
448  ALSSpecificConfig *sconf = &ctx->sconf;
449  int error = 0;
450 
451  // report unsupported feature and set error value
452  #define MISSING_ERR(cond, str, errval) \
453  { \
454  if (cond) { \
455  avpriv_report_missing_feature(ctx->avctx, \
456  str); \
457  error = errval; \
458  } \
459  }
460 
461  MISSING_ERR(sconf->rlslms, "Adaptive RLS-LMS prediction", AVERROR_PATCHWELCOME);
462 
463  return error;
464 }
465 
466 
467 /** Parse the bs_info field to extract the block partitioning used in
468  * block switching mode, refer to ISO/IEC 14496-3, section 11.6.2.
469  */
470 static void parse_bs_info(const uint32_t bs_info, unsigned int n,
471  unsigned int div, unsigned int **div_blocks,
472  unsigned int *num_blocks)
473 {
474  if (n < 31 && ((bs_info << n) & 0x40000000)) {
475  // if the level is valid and the investigated bit n is set
476  // then recursively check both children at bits (2n+1) and (2n+2)
477  n *= 2;
478  div += 1;
479  parse_bs_info(bs_info, n + 1, div, div_blocks, num_blocks);
480  parse_bs_info(bs_info, n + 2, div, div_blocks, num_blocks);
481  } else {
482  // else the bit is not set or the last level has been reached
483  // (bit implicitly not set)
484  **div_blocks = div;
485  (*div_blocks)++;
486  (*num_blocks)++;
487  }
488 }
489 
490 
491 /** Read and decode a Rice codeword.
492  */
493 static int32_t decode_rice(GetBitContext *gb, unsigned int k)
494 {
495  int max = get_bits_left(gb) - k;
496  unsigned q = get_unary(gb, 0, max);
497  int r = k ? get_bits1(gb) : !(q & 1);
498 
499  if (k > 1) {
500  q <<= (k - 1);
501  q += get_bits_long(gb, k - 1);
502  } else if (!k) {
503  q >>= 1;
504  }
505  return r ? q : ~q;
506 }
507 
508 
509 /** Convert PARCOR coefficient k to direct filter coefficient.
510  */
511 static void parcor_to_lpc(unsigned int k, const int32_t *par, int32_t *cof)
512 {
513  int i, j;
514 
515  for (i = 0, j = k - 1; i < j; i++, j--) {
516  unsigned tmp1 = ((MUL64(par[k], cof[j]) + (1 << 19)) >> 20);
517  cof[j] += ((MUL64(par[k], cof[i]) + (1 << 19)) >> 20);
518  cof[i] += tmp1;
519  }
520  if (i == j)
521  cof[i] += ((MUL64(par[k], cof[j]) + (1 << 19)) >> 20);
522 
523  cof[k] = par[k];
524 }
525 
526 
527 /** Read block switching field if necessary and set actual block sizes.
528  * Also assure that the block sizes of the last frame correspond to the
529  * actual number of samples.
530  */
531 static void get_block_sizes(ALSDecContext *ctx, unsigned int *div_blocks,
532  uint32_t *bs_info)
533 {
534  ALSSpecificConfig *sconf = &ctx->sconf;
535  GetBitContext *gb = &ctx->gb;
536  unsigned int *ptr_div_blocks = div_blocks;
537  unsigned int b;
538 
539  if (sconf->block_switching) {
540  unsigned int bs_info_len = 1 << (sconf->block_switching + 2);
541  *bs_info = get_bits_long(gb, bs_info_len);
542  *bs_info <<= (32 - bs_info_len);
543  }
544 
545  ctx->num_blocks = 0;
546  parse_bs_info(*bs_info, 0, 0, &ptr_div_blocks, &ctx->num_blocks);
547 
548  // The last frame may have an overdetermined block structure given in
549  // the bitstream. In that case the defined block structure would need
550  // more samples than available to be consistent.
551  // The block structure is actually used but the block sizes are adapted
552  // to fit the actual number of available samples.
553  // Example: 5 samples, 2nd level block sizes: 2 2 2 2.
554  // This results in the actual block sizes: 2 2 1 0.
555  // This is not specified in 14496-3 but actually done by the reference
556  // codec RM22 revision 2.
557  // This appears to happen in case of an odd number of samples in the last
558  // frame which is actually not allowed by the block length switching part
559  // of 14496-3.
560  // The ALS conformance files feature an odd number of samples in the last
561  // frame.
562 
563  for (b = 0; b < ctx->num_blocks; b++)
564  div_blocks[b] = ctx->sconf.frame_length >> div_blocks[b];
565 
566  if (ctx->cur_frame_length != ctx->sconf.frame_length) {
567  unsigned int remaining = ctx->cur_frame_length;
568 
569  for (b = 0; b < ctx->num_blocks; b++) {
570  if (remaining <= div_blocks[b]) {
571  div_blocks[b] = remaining;
572  ctx->num_blocks = b + 1;
573  break;
574  }
575 
576  remaining -= div_blocks[b];
577  }
578  }
579 }
580 
581 
582 /** Read the block data for a constant block
583  */
585 {
586  ALSSpecificConfig *sconf = &ctx->sconf;
587  AVCodecContext *avctx = ctx->avctx;
588  GetBitContext *gb = &ctx->gb;
589 
590  if (bd->block_length <= 0)
591  return AVERROR_INVALIDDATA;
592 
593  *bd->raw_samples = 0;
594  *bd->const_block = get_bits1(gb); // 1 = constant value, 0 = zero block (silence)
595  bd->js_blocks = get_bits1(gb);
596 
597  // skip 5 reserved bits
598  skip_bits(gb, 5);
599 
600  if (*bd->const_block) {
601  unsigned int const_val_bits = sconf->floating ? 24 : avctx->bits_per_raw_sample;
602  *bd->raw_samples = get_sbits_long(gb, const_val_bits);
603  }
604 
605  // ensure constant block decoding by reusing this field
606  *bd->const_block = 1;
607 
608  return 0;
609 }
610 
611 
612 /** Decode the block data for a constant block
613  */
615 {
616  int smp = bd->block_length - 1;
617  int32_t val = *bd->raw_samples;
618  int32_t *dst = bd->raw_samples + 1;
619 
620  // write raw samples into buffer
621  for (; smp; smp--)
622  *dst++ = val;
623 }
624 
625 
626 /** Read the block data for a non-constant block
627  */
629 {
630  ALSSpecificConfig *sconf = &ctx->sconf;
631  AVCodecContext *avctx = ctx->avctx;
632  GetBitContext *gb = &ctx->gb;
633  unsigned int k;
634  unsigned int s[8];
635  unsigned int sx[8];
636  unsigned int sub_blocks, log2_sub_blocks, sb_length;
637  unsigned int start = 0;
638  unsigned int opt_order;
639  int sb;
640  int32_t *quant_cof = bd->quant_cof;
641  int32_t *current_res;
642 
643 
644  // ensure variable block decoding by reusing this field
645  *bd->const_block = 0;
646 
647  *bd->opt_order = 1;
648  bd->js_blocks = get_bits1(gb);
649 
650  opt_order = *bd->opt_order;
651 
652  // determine the number of subblocks for entropy decoding
653  if (!sconf->bgmc && !sconf->sb_part) {
654  log2_sub_blocks = 0;
655  } else {
656  if (sconf->bgmc && sconf->sb_part)
657  log2_sub_blocks = get_bits(gb, 2);
658  else
659  log2_sub_blocks = 2 * get_bits1(gb);
660  }
661 
662  sub_blocks = 1 << log2_sub_blocks;
663 
664  // do not continue in case of a damaged stream since
665  // block_length must be evenly divisible by sub_blocks
666  if (bd->block_length & (sub_blocks - 1) || bd->block_length <= 0) {
667  av_log(avctx, AV_LOG_WARNING,
668  "Block length is not evenly divisible by the number of subblocks.\n");
669  return AVERROR_INVALIDDATA;
670  }
671 
672  sb_length = bd->block_length >> log2_sub_blocks;
673 
674  if (sconf->bgmc) {
675  s[0] = get_bits(gb, 8 + (sconf->resolution > 1));
676  for (k = 1; k < sub_blocks; k++)
677  s[k] = s[k - 1] + decode_rice(gb, 2);
678 
679  for (k = 0; k < sub_blocks; k++) {
680  sx[k] = s[k] & 0x0F;
681  s [k] >>= 4;
682  }
683  } else {
684  s[0] = get_bits(gb, 4 + (sconf->resolution > 1));
685  for (k = 1; k < sub_blocks; k++)
686  s[k] = s[k - 1] + decode_rice(gb, 0);
687  }
688  for (k = 1; k < sub_blocks; k++)
689  if (s[k] > 32) {
690  av_log(avctx, AV_LOG_ERROR, "k invalid for rice code.\n");
691  return AVERROR_INVALIDDATA;
692  }
693 
694  if (get_bits1(gb))
695  *bd->shift_lsbs = get_bits(gb, 4) + 1;
696 
697  *bd->store_prev_samples = (bd->js_blocks && bd->raw_other) || *bd->shift_lsbs;
698 
699 
700  if (!sconf->rlslms) {
701  if (sconf->adapt_order && sconf->max_order) {
702  int opt_order_length = av_ceil_log2(av_clip((bd->block_length >> 3) - 1,
703  2, sconf->max_order + 1));
704  *bd->opt_order = get_bits(gb, opt_order_length);
705  if (*bd->opt_order > sconf->max_order) {
706  *bd->opt_order = sconf->max_order;
707  av_log(avctx, AV_LOG_ERROR, "Predictor order too large.\n");
708  return AVERROR_INVALIDDATA;
709  }
710  } else {
711  *bd->opt_order = sconf->max_order;
712  }
713  opt_order = *bd->opt_order;
714 
715  if (opt_order) {
716  int add_base;
717 
718  if (sconf->coef_table == 3) {
719  add_base = 0x7F;
720 
721  // read coefficient 0
722  quant_cof[0] = 32 * parcor_scaled_values[get_bits(gb, 7)];
723 
724  // read coefficient 1
725  if (opt_order > 1)
726  quant_cof[1] = -32 * parcor_scaled_values[get_bits(gb, 7)];
727 
728  // read coefficients 2 to opt_order
729  for (k = 2; k < opt_order; k++)
730  quant_cof[k] = get_bits(gb, 7);
731  } else {
732  int k_max;
733  add_base = 1;
734 
735  // read coefficient 0 to 19
736  k_max = FFMIN(opt_order, 20);
737  for (k = 0; k < k_max; k++) {
738  int rice_param = parcor_rice_table[sconf->coef_table][k][1];
739  int offset = parcor_rice_table[sconf->coef_table][k][0];
740  quant_cof[k] = decode_rice(gb, rice_param) + offset;
741  if (quant_cof[k] < -64 || quant_cof[k] > 63) {
742  av_log(avctx, AV_LOG_ERROR,
743  "quant_cof %"PRId32" is out of range.\n",
744  quant_cof[k]);
745  return AVERROR_INVALIDDATA;
746  }
747  }
748 
749  // read coefficients 20 to 126
750  k_max = FFMIN(opt_order, 127);
751  for (; k < k_max; k++)
752  quant_cof[k] = decode_rice(gb, 2) + (k & 1);
753 
754  // read coefficients 127 to opt_order
755  for (; k < opt_order; k++)
756  quant_cof[k] = decode_rice(gb, 1);
757 
758  quant_cof[0] = 32 * parcor_scaled_values[quant_cof[0] + 64];
759 
760  if (opt_order > 1)
761  quant_cof[1] = -32 * parcor_scaled_values[quant_cof[1] + 64];
762  }
763 
764  for (k = 2; k < opt_order; k++)
765  quant_cof[k] = (quant_cof[k] * (1U << 14)) + (add_base << 13);
766  }
767  }
768 
769  // read LTP gain and lag values
770  if (sconf->long_term_prediction) {
771  *bd->use_ltp = get_bits1(gb);
772 
773  if (*bd->use_ltp) {
774  int r, c;
775 
776  bd->ltp_gain[0] = decode_rice(gb, 1) * 8;
777  bd->ltp_gain[1] = decode_rice(gb, 2) * 8;
778 
779  r = get_unary(gb, 0, 4);
780  c = get_bits(gb, 2);
781  if (r >= 4) {
782  av_log(avctx, AV_LOG_ERROR, "r overflow\n");
783  return AVERROR_INVALIDDATA;
784  }
785 
786  bd->ltp_gain[2] = ltp_gain_values[r][c];
787 
788  bd->ltp_gain[3] = decode_rice(gb, 2) * 8;
789  bd->ltp_gain[4] = decode_rice(gb, 1) * 8;
790 
791  *bd->ltp_lag = get_bits(gb, ctx->ltp_lag_length);
792  *bd->ltp_lag += FFMAX(4, opt_order + 1);
793  }
794  }
795 
796  // read first value and residuals in case of a random access block
797  if (bd->ra_block) {
798  start = FFMIN(opt_order, 3);
799  av_assert0(sb_length <= sconf->frame_length);
800  if (sb_length <= start) {
801  // opt_order or sb_length may be corrupted, either way this is unsupported and not well defined in the specification
802  av_log(avctx, AV_LOG_ERROR, "Sub block length smaller or equal start\n");
803  return AVERROR_PATCHWELCOME;
804  }
805 
806  if (opt_order)
807  bd->raw_samples[0] = decode_rice(gb, avctx->bits_per_raw_sample - 4);
808  if (opt_order > 1)
809  bd->raw_samples[1] = decode_rice(gb, FFMIN(s[0] + 3, ctx->s_max));
810  if (opt_order > 2)
811  bd->raw_samples[2] = decode_rice(gb, FFMIN(s[0] + 1, ctx->s_max));
812  }
813 
814  // read all residuals
815  if (sconf->bgmc) {
816  int delta[8];
817  unsigned int k [8];
818  unsigned int b = av_clip((av_ceil_log2(bd->block_length) - 3) >> 1, 0, 5);
819 
820  // read most significant bits
821  unsigned int high;
822  unsigned int low;
823  unsigned int value;
824 
825  int ret = ff_bgmc_decode_init(gb, &high, &low, &value);
826  if (ret < 0)
827  return ret;
828 
829  current_res = bd->raw_samples + start;
830 
831  for (sb = 0; sb < sub_blocks; sb++) {
832  unsigned int sb_len = sb_length - (sb ? 0 : start);
833 
834  k [sb] = s[sb] > b ? s[sb] - b : 0;
835  delta[sb] = 5 - s[sb] + k[sb];
836 
837  if (k[sb] >= 32)
838  return AVERROR_INVALIDDATA;
839 
840  ff_bgmc_decode(gb, sb_len, current_res,
841  delta[sb], sx[sb], &high, &low, &value, ctx->bgmc_lut, ctx->bgmc_lut_status);
842 
843  current_res += sb_len;
844  }
845 
846  ff_bgmc_decode_end(gb);
847 
848 
849  // read least significant bits and tails
850  current_res = bd->raw_samples + start;
851 
852  for (sb = 0; sb < sub_blocks; sb++, start = 0) {
853  unsigned int cur_tail_code = tail_code[sx[sb]][delta[sb]];
854  unsigned int cur_k = k[sb];
855  unsigned int cur_s = s[sb];
856 
857  for (; start < sb_length; start++) {
858  int32_t res = *current_res;
859 
860  if (res == cur_tail_code) {
861  unsigned int max_msb = (2 + (sx[sb] > 2) + (sx[sb] > 10))
862  << (5 - delta[sb]);
863 
864  res = decode_rice(gb, cur_s);
865 
866  if (res >= 0) {
867  res += (max_msb ) << cur_k;
868  } else {
869  res -= (max_msb - 1) << cur_k;
870  }
871  } else {
872  if (res > cur_tail_code)
873  res--;
874 
875  if (res & 1)
876  res = -res;
877 
878  res >>= 1;
879 
880  if (cur_k) {
881  res *= 1U << cur_k;
882  res |= get_bits_long(gb, cur_k);
883  }
884  }
885 
886  *current_res++ = res;
887  }
888  }
889  } else {
890  current_res = bd->raw_samples + start;
891 
892  for (sb = 0; sb < sub_blocks; sb++, start = 0)
893  for (; start < sb_length; start++)
894  *current_res++ = decode_rice(gb, s[sb]);
895  }
896 
897  return 0;
898 }
899 
900 
901 /** Decode the block data for a non-constant block
902  */
904 {
905  ALSSpecificConfig *sconf = &ctx->sconf;
906  unsigned int block_length = bd->block_length;
907  unsigned int smp = 0;
908  unsigned int k;
909  int opt_order = *bd->opt_order;
910  int sb;
911  int64_t y;
912  int32_t *quant_cof = bd->quant_cof;
913  int32_t *lpc_cof = bd->lpc_cof;
914  int32_t *raw_samples = bd->raw_samples;
915  int32_t *raw_samples_end = bd->raw_samples + bd->block_length;
916  int32_t *lpc_cof_reversed = ctx->lpc_cof_reversed_buffer;
917 
918  // reverse long-term prediction
919  if (*bd->use_ltp) {
920  int ltp_smp;
921 
922  for (ltp_smp = FFMAX(*bd->ltp_lag - 2, 0); ltp_smp < block_length; ltp_smp++) {
923  int center = ltp_smp - *bd->ltp_lag;
924  int begin = FFMAX(0, center - 2);
925  int end = center + 3;
926  int tab = 5 - (end - begin);
927  int base;
928 
929  y = 1 << 6;
930 
931  for (base = begin; base < end; base++, tab++)
932  y += (uint64_t)MUL64(bd->ltp_gain[tab], raw_samples[base]);
933 
934  raw_samples[ltp_smp] += y >> 7;
935  }
936  }
937 
938  // reconstruct all samples from residuals
939  if (bd->ra_block) {
940  for (smp = 0; smp < FFMIN(opt_order, block_length); smp++) {
941  y = 1 << 19;
942 
943  for (sb = 0; sb < smp; sb++)
944  y += (uint64_t)MUL64(lpc_cof[sb], raw_samples[-(sb + 1)]);
945 
946  *raw_samples++ -= y >> 20;
947  parcor_to_lpc(smp, quant_cof, lpc_cof);
948  }
949  } else {
950  for (k = 0; k < opt_order; k++)
951  parcor_to_lpc(k, quant_cof, lpc_cof);
952 
953  // store previous samples in case that they have to be altered
954  if (*bd->store_prev_samples)
955  memcpy(bd->prev_raw_samples, raw_samples - sconf->max_order,
956  sizeof(*bd->prev_raw_samples) * sconf->max_order);
957 
958  // reconstruct difference signal for prediction (joint-stereo)
959  if (bd->js_blocks && bd->raw_other) {
960  uint32_t *left, *right;
961 
962  if (bd->raw_other > raw_samples) { // D = R - L
963  left = raw_samples;
964  right = bd->raw_other;
965  } else { // D = R - L
966  left = bd->raw_other;
967  right = raw_samples;
968  }
969 
970  for (sb = -1; sb >= -sconf->max_order; sb--)
971  raw_samples[sb] = right[sb] - left[sb];
972  }
973 
974  // reconstruct shifted signal
975  if (*bd->shift_lsbs)
976  for (sb = -1; sb >= -sconf->max_order; sb--)
977  raw_samples[sb] >>= *bd->shift_lsbs;
978  }
979 
980  // reverse linear prediction coefficients for efficiency
981  lpc_cof = lpc_cof + opt_order;
982 
983  for (sb = 0; sb < opt_order; sb++)
984  lpc_cof_reversed[sb] = lpc_cof[-(sb + 1)];
985 
986  // reconstruct raw samples
987  raw_samples = bd->raw_samples + smp;
988  lpc_cof = lpc_cof_reversed + opt_order;
989 
990  for (; raw_samples < raw_samples_end; raw_samples++) {
991  y = 1 << 19;
992 
993  for (sb = -opt_order; sb < 0; sb++)
994  y += (uint64_t)MUL64(lpc_cof[sb], raw_samples[sb]);
995 
996  *raw_samples -= y >> 20;
997  }
998 
999  raw_samples = bd->raw_samples;
1000 
1001  // restore previous samples in case that they have been altered
1002  if (*bd->store_prev_samples)
1003  memcpy(raw_samples - sconf->max_order, bd->prev_raw_samples,
1004  sizeof(*raw_samples) * sconf->max_order);
1005 
1006  return 0;
1007 }
1008 
1009 
1010 /** Read the block data.
1011  */
1013 {
1014  int ret;
1015  GetBitContext *gb = &ctx->gb;
1016  ALSSpecificConfig *sconf = &ctx->sconf;
1017 
1018  *bd->shift_lsbs = 0;
1019 
1020  if (get_bits_left(gb) < 7)
1021  return AVERROR_INVALIDDATA;
1022 
1023  // read block type flag and read the samples accordingly
1024  if (get_bits1(gb)) {
1025  ret = read_var_block_data(ctx, bd);
1026  } else {
1027  ret = read_const_block_data(ctx, bd);
1028  }
1029 
1030  if (!sconf->mc_coding || ctx->js_switch)
1031  align_get_bits(gb);
1032 
1033  return ret;
1034 }
1035 
1036 
1037 /** Decode the block data.
1038  */
1040 {
1041  unsigned int smp;
1042  int ret = 0;
1043 
1044  // read block type flag and read the samples accordingly
1045  if (*bd->const_block)
1046  decode_const_block_data(ctx, bd);
1047  else
1048  ret = decode_var_block_data(ctx, bd); // always return 0
1049 
1050  if (ret < 0)
1051  return ret;
1052 
1053  // TODO: read RLSLMS extension data
1054 
1055  if (*bd->shift_lsbs)
1056  for (smp = 0; smp < bd->block_length; smp++)
1057  bd->raw_samples[smp] = (unsigned)bd->raw_samples[smp] << *bd->shift_lsbs;
1058 
1059  return 0;
1060 }
1061 
1062 
1063 /** Read and decode block data successively.
1064  */
1066 {
1067  int ret;
1068 
1069  if ((ret = read_block(ctx, bd)) < 0)
1070  return ret;
1071 
1072  return decode_block(ctx, bd);
1073 }
1074 
1075 
1076 /** Compute the number of samples left to decode for the current frame and
1077  * sets these samples to zero.
1078  */
1079 static void zero_remaining(unsigned int b, unsigned int b_max,
1080  const unsigned int *div_blocks, int32_t *buf)
1081 {
1082  unsigned int count = 0;
1083 
1084  while (b < b_max)
1085  count += div_blocks[b++];
1086 
1087  if (count)
1088  memset(buf, 0, sizeof(*buf) * count);
1089 }
1090 
1091 
1092 /** Decode blocks independently.
1093  */
1094 static int decode_blocks_ind(ALSDecContext *ctx, unsigned int ra_frame,
1095  unsigned int c, const unsigned int *div_blocks,
1096  unsigned int *js_blocks)
1097 {
1098  int ret;
1099  unsigned int b;
1100  ALSBlockData bd = { 0 };
1101 
1102  bd.ra_block = ra_frame;
1103  bd.const_block = ctx->const_block;
1104  bd.shift_lsbs = ctx->shift_lsbs;
1105  bd.opt_order = ctx->opt_order;
1107  bd.use_ltp = ctx->use_ltp;
1108  bd.ltp_lag = ctx->ltp_lag;
1109  bd.ltp_gain = ctx->ltp_gain[0];
1110  bd.quant_cof = ctx->quant_cof[0];
1111  bd.lpc_cof = ctx->lpc_cof[0];
1113  bd.raw_samples = ctx->raw_samples[c];
1114 
1115 
1116  for (b = 0; b < ctx->num_blocks; b++) {
1117  bd.block_length = div_blocks[b];
1118 
1119  if ((ret = read_decode_block(ctx, &bd)) < 0) {
1120  // damaged block, write zero for the rest of the frame
1121  zero_remaining(b, ctx->num_blocks, div_blocks, bd.raw_samples);
1122  return ret;
1123  }
1124  bd.raw_samples += div_blocks[b];
1125  bd.ra_block = 0;
1126  }
1127 
1128  return 0;
1129 }
1130 
1131 
1132 /** Decode blocks dependently.
1133  */
1134 static int decode_blocks(ALSDecContext *ctx, unsigned int ra_frame,
1135  unsigned int c, const unsigned int *div_blocks,
1136  unsigned int *js_blocks)
1137 {
1138  ALSSpecificConfig *sconf = &ctx->sconf;
1139  unsigned int offset = 0;
1140  unsigned int b;
1141  int ret;
1142  ALSBlockData bd[2] = { { 0 } };
1143 
1144  bd[0].ra_block = ra_frame;
1145  bd[0].const_block = ctx->const_block;
1146  bd[0].shift_lsbs = ctx->shift_lsbs;
1147  bd[0].opt_order = ctx->opt_order;
1149  bd[0].use_ltp = ctx->use_ltp;
1150  bd[0].ltp_lag = ctx->ltp_lag;
1151  bd[0].ltp_gain = ctx->ltp_gain[0];
1152  bd[0].quant_cof = ctx->quant_cof[0];
1153  bd[0].lpc_cof = ctx->lpc_cof[0];
1154  bd[0].prev_raw_samples = ctx->prev_raw_samples;
1155  bd[0].js_blocks = *js_blocks;
1156 
1157  bd[1].ra_block = ra_frame;
1158  bd[1].const_block = ctx->const_block;
1159  bd[1].shift_lsbs = ctx->shift_lsbs;
1160  bd[1].opt_order = ctx->opt_order;
1162  bd[1].use_ltp = ctx->use_ltp;
1163  bd[1].ltp_lag = ctx->ltp_lag;
1164  bd[1].ltp_gain = ctx->ltp_gain[0];
1165  bd[1].quant_cof = ctx->quant_cof[0];
1166  bd[1].lpc_cof = ctx->lpc_cof[0];
1167  bd[1].prev_raw_samples = ctx->prev_raw_samples;
1168  bd[1].js_blocks = *(js_blocks + 1);
1169 
1170  // decode all blocks
1171  for (b = 0; b < ctx->num_blocks; b++) {
1172  unsigned int s;
1173 
1174  bd[0].block_length = div_blocks[b];
1175  bd[1].block_length = div_blocks[b];
1176 
1177  bd[0].raw_samples = ctx->raw_samples[c ] + offset;
1178  bd[1].raw_samples = ctx->raw_samples[c + 1] + offset;
1179 
1180  bd[0].raw_other = bd[1].raw_samples;
1181  bd[1].raw_other = bd[0].raw_samples;
1182 
1183  if ((ret = read_decode_block(ctx, &bd[0])) < 0 ||
1184  (ret = read_decode_block(ctx, &bd[1])) < 0)
1185  goto fail;
1186 
1187  // reconstruct joint-stereo blocks
1188  if (bd[0].js_blocks) {
1189  if (bd[1].js_blocks)
1190  av_log(ctx->avctx, AV_LOG_WARNING, "Invalid channel pair.\n");
1191 
1192  for (s = 0; s < div_blocks[b]; s++)
1193  bd[0].raw_samples[s] = bd[1].raw_samples[s] - (unsigned)bd[0].raw_samples[s];
1194  } else if (bd[1].js_blocks) {
1195  for (s = 0; s < div_blocks[b]; s++)
1196  bd[1].raw_samples[s] = bd[1].raw_samples[s] + (unsigned)bd[0].raw_samples[s];
1197  }
1198 
1199  offset += div_blocks[b];
1200  bd[0].ra_block = 0;
1201  bd[1].ra_block = 0;
1202  }
1203 
1204  // store carryover raw samples,
1205  // the others channel raw samples are stored by the calling function.
1206  memmove(ctx->raw_samples[c] - sconf->max_order,
1207  ctx->raw_samples[c] - sconf->max_order + sconf->frame_length,
1208  sizeof(*ctx->raw_samples[c]) * sconf->max_order);
1209 
1210  return 0;
1211 fail:
1212  // damaged block, write zero for the rest of the frame
1213  zero_remaining(b, ctx->num_blocks, div_blocks, bd[0].raw_samples);
1214  zero_remaining(b, ctx->num_blocks, div_blocks, bd[1].raw_samples);
1215  return ret;
1216 }
1217 
1218 static inline int als_weighting(GetBitContext *gb, int k, int off)
1219 {
1220  int idx = av_clip(decode_rice(gb, k) + off,
1221  0, FF_ARRAY_ELEMS(mcc_weightings) - 1);
1222  return mcc_weightings[idx];
1223 }
1224 
1225 /** Read the channel data.
1226  */
1228 {
1229  GetBitContext *gb = &ctx->gb;
1230  ALSChannelData *current = cd;
1231  unsigned int channels = ctx->avctx->channels;
1232  int entries = 0;
1233 
1234  while (entries < channels && !(current->stop_flag = get_bits1(gb))) {
1235  current->master_channel = get_bits_long(gb, av_ceil_log2(channels));
1236 
1237  if (current->master_channel >= channels) {
1238  av_log(ctx->avctx, AV_LOG_ERROR, "Invalid master channel.\n");
1239  return AVERROR_INVALIDDATA;
1240  }
1241 
1242  if (current->master_channel != c) {
1243  current->time_diff_flag = get_bits1(gb);
1244  current->weighting[0] = als_weighting(gb, 1, 16);
1245  current->weighting[1] = als_weighting(gb, 2, 14);
1246  current->weighting[2] = als_weighting(gb, 1, 16);
1247 
1248  if (current->time_diff_flag) {
1249  current->weighting[3] = als_weighting(gb, 1, 16);
1250  current->weighting[4] = als_weighting(gb, 1, 16);
1251  current->weighting[5] = als_weighting(gb, 1, 16);
1252 
1253  current->time_diff_sign = get_bits1(gb);
1254  current->time_diff_index = get_bits(gb, ctx->ltp_lag_length - 3) + 3;
1255  }
1256  }
1257 
1258  current++;
1259  entries++;
1260  }
1261 
1262  if (entries == channels) {
1263  av_log(ctx->avctx, AV_LOG_ERROR, "Damaged channel data.\n");
1264  return AVERROR_INVALIDDATA;
1265  }
1266 
1267  align_get_bits(gb);
1268  return 0;
1269 }
1270 
1271 
1272 /** Recursively reverts the inter-channel correlation for a block.
1273  */
1275  ALSChannelData **cd, int *reverted,
1276  unsigned int offset, int c)
1277 {
1278  ALSChannelData *ch = cd[c];
1279  unsigned int dep = 0;
1280  unsigned int channels = ctx->avctx->channels;
1281  unsigned int channel_size = ctx->sconf.frame_length + ctx->sconf.max_order;
1282 
1283  if (reverted[c])
1284  return 0;
1285 
1286  reverted[c] = 1;
1287 
1288  while (dep < channels && !ch[dep].stop_flag) {
1289  revert_channel_correlation(ctx, bd, cd, reverted, offset,
1290  ch[dep].master_channel);
1291 
1292  dep++;
1293  }
1294 
1295  if (dep == channels) {
1296  av_log(ctx->avctx, AV_LOG_WARNING, "Invalid channel correlation.\n");
1297  return AVERROR_INVALIDDATA;
1298  }
1299 
1300  bd->const_block = ctx->const_block + c;
1301  bd->shift_lsbs = ctx->shift_lsbs + c;
1302  bd->opt_order = ctx->opt_order + c;
1304  bd->use_ltp = ctx->use_ltp + c;
1305  bd->ltp_lag = ctx->ltp_lag + c;
1306  bd->ltp_gain = ctx->ltp_gain[c];
1307  bd->lpc_cof = ctx->lpc_cof[c];
1308  bd->quant_cof = ctx->quant_cof[c];
1309  bd->raw_samples = ctx->raw_samples[c] + offset;
1310 
1311  for (dep = 0; !ch[dep].stop_flag; dep++) {
1312  ptrdiff_t smp;
1313  ptrdiff_t begin = 1;
1314  ptrdiff_t end = bd->block_length - 1;
1315  int64_t y;
1316  int32_t *master = ctx->raw_samples[ch[dep].master_channel] + offset;
1317 
1318  if (ch[dep].master_channel == c)
1319  continue;
1320 
1321  if (ch[dep].time_diff_flag) {
1322  int t = ch[dep].time_diff_index;
1323 
1324  if (ch[dep].time_diff_sign) {
1325  t = -t;
1326  if (begin < t) {
1327  av_log(ctx->avctx, AV_LOG_ERROR, "begin %"PTRDIFF_SPECIFIER" smaller than time diff index %d.\n", begin, t);
1328  return AVERROR_INVALIDDATA;
1329  }
1330  begin -= t;
1331  } else {
1332  if (end < t) {
1333  av_log(ctx->avctx, AV_LOG_ERROR, "end %"PTRDIFF_SPECIFIER" smaller than time diff index %d.\n", end, t);
1334  return AVERROR_INVALIDDATA;
1335  }
1336  end -= t;
1337  }
1338 
1339  if (FFMIN(begin - 1, begin - 1 + t) < ctx->raw_buffer - master ||
1340  FFMAX(end + 1, end + 1 + t) > ctx->raw_buffer + channels * channel_size - master) {
1341  av_log(ctx->avctx, AV_LOG_ERROR,
1342  "sample pointer range [%p, %p] not contained in raw_buffer [%p, %p].\n",
1343  master + FFMIN(begin - 1, begin - 1 + t), master + FFMAX(end + 1, end + 1 + t),
1344  ctx->raw_buffer, ctx->raw_buffer + channels * channel_size);
1345  return AVERROR_INVALIDDATA;
1346  }
1347 
1348  for (smp = begin; smp < end; smp++) {
1349  y = (1 << 6) +
1350  MUL64(ch[dep].weighting[0], master[smp - 1 ]) +
1351  MUL64(ch[dep].weighting[1], master[smp ]) +
1352  MUL64(ch[dep].weighting[2], master[smp + 1 ]) +
1353  MUL64(ch[dep].weighting[3], master[smp - 1 + t]) +
1354  MUL64(ch[dep].weighting[4], master[smp + t]) +
1355  MUL64(ch[dep].weighting[5], master[smp + 1 + t]);
1356 
1357  bd->raw_samples[smp] += y >> 7;
1358  }
1359  } else {
1360 
1361  if (begin - 1 < ctx->raw_buffer - master ||
1362  end + 1 > ctx->raw_buffer + channels * channel_size - master) {
1363  av_log(ctx->avctx, AV_LOG_ERROR,
1364  "sample pointer range [%p, %p] not contained in raw_buffer [%p, %p].\n",
1365  master + begin - 1, master + end + 1,
1366  ctx->raw_buffer, ctx->raw_buffer + channels * channel_size);
1367  return AVERROR_INVALIDDATA;
1368  }
1369 
1370  for (smp = begin; smp < end; smp++) {
1371  y = (1 << 6) +
1372  MUL64(ch[dep].weighting[0], master[smp - 1]) +
1373  MUL64(ch[dep].weighting[1], master[smp ]) +
1374  MUL64(ch[dep].weighting[2], master[smp + 1]);
1375 
1376  bd->raw_samples[smp] += y >> 7;
1377  }
1378  }
1379  }
1380 
1381  return 0;
1382 }
1383 
1384 
1385 /** multiply two softfloats and handle the rounding off
1386  */
1388  uint64_t mantissa_temp;
1389  uint64_t mask_64;
1390  int cutoff_bit_count;
1391  unsigned char last_2_bits;
1392  unsigned int mantissa;
1393  int32_t sign;
1394  uint32_t return_val = 0;
1395  int bit_count = 48;
1396 
1397  sign = a.sign ^ b.sign;
1398 
1399  // Multiply mantissa bits in a 64-bit register
1400  mantissa_temp = (uint64_t)a.mant * (uint64_t)b.mant;
1401  mask_64 = (uint64_t)0x1 << 47;
1402 
1403  if (!mantissa_temp)
1404  return FLOAT_0;
1405 
1406  // Count the valid bit count
1407  while (!(mantissa_temp & mask_64) && mask_64) {
1408  bit_count--;
1409  mask_64 >>= 1;
1410  }
1411 
1412  // Round off
1413  cutoff_bit_count = bit_count - 24;
1414  if (cutoff_bit_count > 0) {
1415  last_2_bits = (unsigned char)(((unsigned int)mantissa_temp >> (cutoff_bit_count - 1)) & 0x3 );
1416  if ((last_2_bits == 0x3) || ((last_2_bits == 0x1) && ((unsigned int)mantissa_temp & ((0x1UL << (cutoff_bit_count - 1)) - 1)))) {
1417  // Need to round up
1418  mantissa_temp += (uint64_t)0x1 << cutoff_bit_count;
1419  }
1420  }
1421 
1422  if (cutoff_bit_count >= 0) {
1423  mantissa = (unsigned int)(mantissa_temp >> cutoff_bit_count);
1424  } else {
1425  mantissa = (unsigned int)(mantissa_temp <<-cutoff_bit_count);
1426  }
1427 
1428  // Need one more shift?
1429  if (mantissa & 0x01000000ul) {
1430  bit_count++;
1431  mantissa >>= 1;
1432  }
1433 
1434  if (!sign) {
1435  return_val = 0x80000000U;
1436  }
1437 
1438  return_val |= ((unsigned)av_clip(a.exp + b.exp + bit_count - 47, -126, 127) << 23) & 0x7F800000;
1439  return_val |= mantissa;
1440  return av_bits2sf_ieee754(return_val);
1441 }
1442 
1443 
1444 /** Read and decode the floating point sample data
1445  */
1446 static int read_diff_float_data(ALSDecContext *ctx, unsigned int ra_frame) {
1447  AVCodecContext *avctx = ctx->avctx;
1448  GetBitContext *gb = &ctx->gb;
1449  SoftFloat_IEEE754 *acf = ctx->acf;
1450  int *shift_value = ctx->shift_value;
1451  int *last_shift_value = ctx->last_shift_value;
1452  int *last_acf_mantissa = ctx->last_acf_mantissa;
1453  int **raw_mantissa = ctx->raw_mantissa;
1454  int *nbits = ctx->nbits;
1455  unsigned char *larray = ctx->larray;
1456  int frame_length = ctx->cur_frame_length;
1457  SoftFloat_IEEE754 scale = av_int2sf_ieee754(0x1u, 23);
1458  unsigned int partA_flag;
1459  unsigned int highest_byte;
1460  unsigned int shift_amp;
1461  uint32_t tmp_32;
1462  int use_acf;
1463  int nchars;
1464  int i;
1465  int c;
1466  long k;
1467  long nbits_aligned;
1468  unsigned long acc;
1469  unsigned long j;
1470  uint32_t sign;
1471  uint32_t e;
1472  uint32_t mantissa;
1473 
1474  skip_bits_long(gb, 32); //num_bytes_diff_float
1475  use_acf = get_bits1(gb);
1476 
1477  if (ra_frame) {
1478  memset(last_acf_mantissa, 0, avctx->channels * sizeof(*last_acf_mantissa));
1479  memset(last_shift_value, 0, avctx->channels * sizeof(*last_shift_value) );
1480  ff_mlz_flush_dict(ctx->mlz);
1481  }
1482 
1483  if (avctx->channels * 8 > get_bits_left(gb))
1484  return AVERROR_INVALIDDATA;
1485 
1486  for (c = 0; c < avctx->channels; ++c) {
1487  if (use_acf) {
1488  //acf_flag
1489  if (get_bits1(gb)) {
1490  tmp_32 = get_bits(gb, 23);
1491  last_acf_mantissa[c] = tmp_32;
1492  } else {
1493  tmp_32 = last_acf_mantissa[c];
1494  }
1495  acf[c] = av_bits2sf_ieee754(tmp_32);
1496  } else {
1497  acf[c] = FLOAT_1;
1498  }
1499 
1500  highest_byte = get_bits(gb, 2);
1501  partA_flag = get_bits1(gb);
1502  shift_amp = get_bits1(gb);
1503 
1504  if (shift_amp) {
1505  shift_value[c] = get_bits(gb, 8);
1506  last_shift_value[c] = shift_value[c];
1507  } else {
1508  shift_value[c] = last_shift_value[c];
1509  }
1510 
1511  if (partA_flag) {
1512  if (!get_bits1(gb)) { //uncompressed
1513  for (i = 0; i < frame_length; ++i) {
1514  if (ctx->raw_samples[c][i] == 0) {
1515  ctx->raw_mantissa[c][i] = get_bits_long(gb, 32);
1516  }
1517  }
1518  } else { //compressed
1519  nchars = 0;
1520  for (i = 0; i < frame_length; ++i) {
1521  if (ctx->raw_samples[c][i] == 0) {
1522  nchars += 4;
1523  }
1524  }
1525 
1526  tmp_32 = ff_mlz_decompression(ctx->mlz, gb, nchars, larray);
1527  if(tmp_32 != nchars) {
1528  av_log(ctx->avctx, AV_LOG_ERROR, "Error in MLZ decompression (%"PRId32", %d).\n", tmp_32, nchars);
1529  return AVERROR_INVALIDDATA;
1530  }
1531 
1532  for (i = 0; i < frame_length; ++i) {
1533  ctx->raw_mantissa[c][i] = AV_RB32(larray);
1534  }
1535  }
1536  }
1537 
1538  //decode part B
1539  if (highest_byte) {
1540  for (i = 0; i < frame_length; ++i) {
1541  if (ctx->raw_samples[c][i] != 0) {
1542  //The following logic is taken from Tabel 14.45 and 14.46 from the ISO spec
1543  if (av_cmp_sf_ieee754(acf[c], FLOAT_1)) {
1544  nbits[i] = 23 - av_log2(abs(ctx->raw_samples[c][i]));
1545  } else {
1546  nbits[i] = 23;
1547  }
1548  nbits[i] = FFMIN(nbits[i], highest_byte*8);
1549  }
1550  }
1551 
1552  if (!get_bits1(gb)) { //uncompressed
1553  for (i = 0; i < frame_length; ++i) {
1554  if (ctx->raw_samples[c][i] != 0) {
1555  raw_mantissa[c][i] = get_bitsz(gb, nbits[i]);
1556  }
1557  }
1558  } else { //compressed
1559  nchars = 0;
1560  for (i = 0; i < frame_length; ++i) {
1561  if (ctx->raw_samples[c][i]) {
1562  nchars += (int) nbits[i] / 8;
1563  if (nbits[i] & 7) {
1564  ++nchars;
1565  }
1566  }
1567  }
1568 
1569  tmp_32 = ff_mlz_decompression(ctx->mlz, gb, nchars, larray);
1570  if(tmp_32 != nchars) {
1571  av_log(ctx->avctx, AV_LOG_ERROR, "Error in MLZ decompression (%"PRId32", %d).\n", tmp_32, nchars);
1572  return AVERROR_INVALIDDATA;
1573  }
1574 
1575  j = 0;
1576  for (i = 0; i < frame_length; ++i) {
1577  if (ctx->raw_samples[c][i]) {
1578  if (nbits[i] & 7) {
1579  nbits_aligned = 8 * ((unsigned int)(nbits[i] / 8) + 1);
1580  } else {
1581  nbits_aligned = nbits[i];
1582  }
1583  acc = 0;
1584  for (k = 0; k < nbits_aligned/8; ++k) {
1585  acc = (acc << 8) + larray[j++];
1586  }
1587  acc >>= (nbits_aligned - nbits[i]);
1588  raw_mantissa[c][i] = acc;
1589  }
1590  }
1591  }
1592  }
1593 
1594  for (i = 0; i < frame_length; ++i) {
1595  SoftFloat_IEEE754 pcm_sf = av_int2sf_ieee754(ctx->raw_samples[c][i], 0);
1596  pcm_sf = av_div_sf_ieee754(pcm_sf, scale);
1597 
1598  if (ctx->raw_samples[c][i] != 0) {
1599  if (!av_cmp_sf_ieee754(acf[c], FLOAT_1)) {
1600  pcm_sf = multiply(acf[c], pcm_sf);
1601  }
1602 
1603  sign = pcm_sf.sign;
1604  e = pcm_sf.exp;
1605  mantissa = (pcm_sf.mant | 0x800000) + raw_mantissa[c][i];
1606 
1607  while(mantissa >= 0x1000000) {
1608  e++;
1609  mantissa >>= 1;
1610  }
1611 
1612  if (mantissa) e += (shift_value[c] - 127);
1613  mantissa &= 0x007fffffUL;
1614 
1615  tmp_32 = (sign << 31) | ((e + EXP_BIAS) << 23) | (mantissa);
1616  ctx->raw_samples[c][i] = tmp_32;
1617  } else {
1618  ctx->raw_samples[c][i] = raw_mantissa[c][i] & 0x007fffffUL;
1619  }
1620  }
1621  align_get_bits(gb);
1622  }
1623  return 0;
1624 }
1625 
1626 
1627 /** Read the frame data.
1628  */
1629 static int read_frame_data(ALSDecContext *ctx, unsigned int ra_frame)
1630 {
1631  ALSSpecificConfig *sconf = &ctx->sconf;
1632  AVCodecContext *avctx = ctx->avctx;
1633  GetBitContext *gb = &ctx->gb;
1634  unsigned int div_blocks[32]; ///< block sizes.
1635  int c;
1636  unsigned int js_blocks[2];
1637  uint32_t bs_info = 0;
1638  int ret;
1639 
1640  // skip the size of the ra unit if present in the frame
1641  if (sconf->ra_flag == RA_FLAG_FRAMES && ra_frame)
1642  skip_bits_long(gb, 32);
1643 
1644  if (sconf->mc_coding && sconf->joint_stereo) {
1645  ctx->js_switch = get_bits1(gb);
1646  align_get_bits(gb);
1647  }
1648 
1649  if (!sconf->mc_coding || ctx->js_switch) {
1650  int independent_bs = !sconf->joint_stereo;
1651 
1652  for (c = 0; c < avctx->channels; c++) {
1653  js_blocks[0] = 0;
1654  js_blocks[1] = 0;
1655 
1656  get_block_sizes(ctx, div_blocks, &bs_info);
1657 
1658  // if joint_stereo and block_switching is set, independent decoding
1659  // is signaled via the first bit of bs_info
1660  if (sconf->joint_stereo && sconf->block_switching)
1661  if (bs_info >> 31)
1662  independent_bs = 2;
1663 
1664  // if this is the last channel, it has to be decoded independently
1665  if (c == avctx->channels - 1 || (c & 1))
1666  independent_bs = 1;
1667 
1668  if (independent_bs) {
1669  ret = decode_blocks_ind(ctx, ra_frame, c,
1670  div_blocks, js_blocks);
1671  if (ret < 0)
1672  return ret;
1673  independent_bs--;
1674  } else {
1675  ret = decode_blocks(ctx, ra_frame, c, div_blocks, js_blocks);
1676  if (ret < 0)
1677  return ret;
1678 
1679  c++;
1680  }
1681 
1682  // store carryover raw samples
1683  memmove(ctx->raw_samples[c] - sconf->max_order,
1684  ctx->raw_samples[c] - sconf->max_order + sconf->frame_length,
1685  sizeof(*ctx->raw_samples[c]) * sconf->max_order);
1686  ctx->highest_decoded_channel = c;
1687  }
1688  } else { // multi-channel coding
1689  ALSBlockData bd = { 0 };
1690  int b, ret;
1691  int *reverted_channels = ctx->reverted_channels;
1692  unsigned int offset = 0;
1693 
1694  for (c = 0; c < avctx->channels; c++)
1695  if (ctx->chan_data[c] < ctx->chan_data_buffer) {
1696  av_log(ctx->avctx, AV_LOG_ERROR, "Invalid channel data.\n");
1697  return AVERROR_INVALIDDATA;
1698  }
1699 
1700  memset(reverted_channels, 0, sizeof(*reverted_channels) * avctx->channels);
1701 
1702  bd.ra_block = ra_frame;
1704 
1705  get_block_sizes(ctx, div_blocks, &bs_info);
1706 
1707  for (b = 0; b < ctx->num_blocks; b++) {
1708  bd.block_length = div_blocks[b];
1709  if (bd.block_length <= 0) {
1710  av_log(ctx->avctx, AV_LOG_WARNING,
1711  "Invalid block length %u in channel data!\n",
1712  bd.block_length);
1713  continue;
1714  }
1715 
1716  for (c = 0; c < avctx->channels; c++) {
1717  bd.const_block = ctx->const_block + c;
1718  bd.shift_lsbs = ctx->shift_lsbs + c;
1719  bd.opt_order = ctx->opt_order + c;
1721  bd.use_ltp = ctx->use_ltp + c;
1722  bd.ltp_lag = ctx->ltp_lag + c;
1723  bd.ltp_gain = ctx->ltp_gain[c];
1724  bd.lpc_cof = ctx->lpc_cof[c];
1725  bd.quant_cof = ctx->quant_cof[c];
1726  bd.raw_samples = ctx->raw_samples[c] + offset;
1727  bd.raw_other = NULL;
1728 
1729  if ((ret = read_block(ctx, &bd)) < 0)
1730  return ret;
1731  if ((ret = read_channel_data(ctx, ctx->chan_data[c], c)) < 0)
1732  return ret;
1733  }
1734 
1735  for (c = 0; c < avctx->channels; c++) {
1736  ret = revert_channel_correlation(ctx, &bd, ctx->chan_data,
1737  reverted_channels, offset, c);
1738  if (ret < 0)
1739  return ret;
1740  }
1741  for (c = 0; c < avctx->channels; c++) {
1742  bd.const_block = ctx->const_block + c;
1743  bd.shift_lsbs = ctx->shift_lsbs + c;
1744  bd.opt_order = ctx->opt_order + c;
1746  bd.use_ltp = ctx->use_ltp + c;
1747  bd.ltp_lag = ctx->ltp_lag + c;
1748  bd.ltp_gain = ctx->ltp_gain[c];
1749  bd.lpc_cof = ctx->lpc_cof[c];
1750  bd.quant_cof = ctx->quant_cof[c];
1751  bd.raw_samples = ctx->raw_samples[c] + offset;
1752 
1753  if ((ret = decode_block(ctx, &bd)) < 0)
1754  return ret;
1755 
1757  }
1758 
1759  memset(reverted_channels, 0, avctx->channels * sizeof(*reverted_channels));
1760  offset += div_blocks[b];
1761  bd.ra_block = 0;
1762  }
1763 
1764  // store carryover raw samples
1765  for (c = 0; c < avctx->channels; c++)
1766  memmove(ctx->raw_samples[c] - sconf->max_order,
1767  ctx->raw_samples[c] - sconf->max_order + sconf->frame_length,
1768  sizeof(*ctx->raw_samples[c]) * sconf->max_order);
1769  }
1770 
1771  if (sconf->floating) {
1772  read_diff_float_data(ctx, ra_frame);
1773  }
1774 
1775  if (get_bits_left(gb) < 0) {
1776  av_log(ctx->avctx, AV_LOG_ERROR, "Overread %d\n", -get_bits_left(gb));
1777  return AVERROR_INVALIDDATA;
1778  }
1779 
1780  return 0;
1781 }
1782 
1783 
1784 /** Decode an ALS frame.
1785  */
1786 static int decode_frame(AVCodecContext *avctx, void *data, int *got_frame_ptr,
1787  AVPacket *avpkt)
1788 {
1789  ALSDecContext *ctx = avctx->priv_data;
1790  AVFrame *frame = data;
1791  ALSSpecificConfig *sconf = &ctx->sconf;
1792  const uint8_t *buffer = avpkt->data;
1793  int buffer_size = avpkt->size;
1794  int invalid_frame, ret;
1795  unsigned int c, sample, ra_frame, bytes_read, shift;
1796 
1797  if ((ret = init_get_bits8(&ctx->gb, buffer, buffer_size)) < 0)
1798  return ret;
1799 
1800  // In the case that the distance between random access frames is set to zero
1801  // (sconf->ra_distance == 0) no frame is treated as a random access frame.
1802  // For the first frame, if prediction is used, all samples used from the
1803  // previous frame are assumed to be zero.
1804  ra_frame = sconf->ra_distance && !(ctx->frame_id % sconf->ra_distance);
1805 
1806  // the last frame to decode might have a different length
1807  if (sconf->samples != 0xFFFFFFFF)
1808  ctx->cur_frame_length = FFMIN(sconf->samples - ctx->frame_id * (uint64_t) sconf->frame_length,
1809  sconf->frame_length);
1810  else
1811  ctx->cur_frame_length = sconf->frame_length;
1812 
1813  ctx->highest_decoded_channel = -1;
1814  // decode the frame data
1815  if ((invalid_frame = read_frame_data(ctx, ra_frame)) < 0)
1816  av_log(ctx->avctx, AV_LOG_WARNING,
1817  "Reading frame data failed. Skipping RA unit.\n");
1818 
1819  if (ctx->highest_decoded_channel == -1) {
1820  av_log(ctx->avctx, AV_LOG_WARNING,
1821  "No channel data decoded.\n");
1822  return AVERROR_INVALIDDATA;
1823  }
1824 
1825  ctx->frame_id++;
1826 
1827  /* get output buffer */
1828  frame->nb_samples = ctx->cur_frame_length;
1829  if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
1830  return ret;
1831 
1832  // transform decoded frame into output format
1833  #define INTERLEAVE_OUTPUT(bps) \
1834  { \
1835  int##bps##_t *dest = (int##bps##_t*)frame->data[0]; \
1836  int channels = avctx->channels; \
1837  int32_t *raw_samples = ctx->raw_samples[0]; \
1838  int raw_step = channels > 1 ? ctx->raw_samples[1] - raw_samples : 1; \
1839  shift = bps - ctx->avctx->bits_per_raw_sample; \
1840  if (!ctx->cs_switch) { \
1841  for (sample = 0; sample < ctx->cur_frame_length; sample++) \
1842  for (c = 0; c < channels; c++) \
1843  *dest++ = raw_samples[c*raw_step + sample] * (1U << shift); \
1844  } else { \
1845  for (sample = 0; sample < ctx->cur_frame_length; sample++) \
1846  for (c = 0; c < channels; c++) \
1847  *dest++ = raw_samples[sconf->chan_pos[c]*raw_step + sample] * (1U << shift);\
1848  } \
1849  }
1850 
1851  if (ctx->avctx->bits_per_raw_sample <= 16) {
1852  INTERLEAVE_OUTPUT(16)
1853  } else {
1854  INTERLEAVE_OUTPUT(32)
1855  }
1856 
1857  // update CRC
1858  if (sconf->crc_enabled && (avctx->err_recognition & (AV_EF_CRCCHECK|AV_EF_CAREFUL))) {
1859  int swap = HAVE_BIGENDIAN != sconf->msb_first;
1860 
1861  if (ctx->avctx->bits_per_raw_sample == 24) {
1862  int32_t *src = (int32_t *)frame->data[0];
1863 
1864  for (sample = 0;
1865  sample < ctx->cur_frame_length * avctx->channels;
1866  sample++) {
1867  int32_t v;
1868 
1869  if (swap)
1870  v = av_bswap32(src[sample]);
1871  else
1872  v = src[sample];
1873  if (!HAVE_BIGENDIAN)
1874  v >>= 8;
1875 
1876  ctx->crc = av_crc(ctx->crc_table, ctx->crc, (uint8_t*)(&v), 3);
1877  }
1878  } else {
1879  uint8_t *crc_source;
1880 
1881  if (swap) {
1882  if (ctx->avctx->bits_per_raw_sample <= 16) {
1883  int16_t *src = (int16_t*) frame->data[0];
1884  int16_t *dest = (int16_t*) ctx->crc_buffer;
1885  for (sample = 0;
1886  sample < ctx->cur_frame_length * avctx->channels;
1887  sample++)
1888  *dest++ = av_bswap16(src[sample]);
1889  } else {
1890  ctx->bdsp.bswap_buf((uint32_t *) ctx->crc_buffer,
1891  (uint32_t *) frame->data[0],
1892  ctx->cur_frame_length * avctx->channels);
1893  }
1894  crc_source = ctx->crc_buffer;
1895  } else {
1896  crc_source = frame->data[0];
1897  }
1898 
1899  ctx->crc = av_crc(ctx->crc_table, ctx->crc, crc_source,
1900  ctx->cur_frame_length * avctx->channels *
1902  }
1903 
1904 
1905  // check CRC sums if this is the last frame
1906  if (ctx->cur_frame_length != sconf->frame_length &&
1907  ctx->crc_org != ctx->crc) {
1908  av_log(avctx, AV_LOG_ERROR, "CRC error.\n");
1909  if (avctx->err_recognition & AV_EF_EXPLODE)
1910  return AVERROR_INVALIDDATA;
1911  }
1912  }
1913 
1914  *got_frame_ptr = 1;
1915 
1916  bytes_read = invalid_frame ? buffer_size :
1917  (get_bits_count(&ctx->gb) + 7) >> 3;
1918 
1919  return bytes_read;
1920 }
1921 
1922 
1923 /** Uninitialize the ALS decoder.
1924  */
1926 {
1927  ALSDecContext *ctx = avctx->priv_data;
1928  int i;
1929 
1930  av_freep(&ctx->sconf.chan_pos);
1931 
1932  ff_bgmc_end(&ctx->bgmc_lut, &ctx->bgmc_lut_status);
1933 
1934  av_freep(&ctx->const_block);
1935  av_freep(&ctx->shift_lsbs);
1936  av_freep(&ctx->opt_order);
1938  av_freep(&ctx->use_ltp);
1939  av_freep(&ctx->ltp_lag);
1940  av_freep(&ctx->ltp_gain);
1941  av_freep(&ctx->ltp_gain_buffer);
1942  av_freep(&ctx->quant_cof);
1943  av_freep(&ctx->lpc_cof);
1944  av_freep(&ctx->quant_cof_buffer);
1945  av_freep(&ctx->lpc_cof_buffer);
1947  av_freep(&ctx->prev_raw_samples);
1948  av_freep(&ctx->raw_samples);
1949  av_freep(&ctx->raw_buffer);
1950  av_freep(&ctx->chan_data);
1951  av_freep(&ctx->chan_data_buffer);
1952  av_freep(&ctx->reverted_channels);
1953  av_freep(&ctx->crc_buffer);
1954  if (ctx->mlz) {
1955  av_freep(&ctx->mlz->dict);
1956  av_freep(&ctx->mlz);
1957  }
1958  av_freep(&ctx->acf);
1959  av_freep(&ctx->last_acf_mantissa);
1960  av_freep(&ctx->shift_value);
1961  av_freep(&ctx->last_shift_value);
1962  if (ctx->raw_mantissa) {
1963  for (i = 0; i < avctx->channels; i++) {
1964  av_freep(&ctx->raw_mantissa[i]);
1965  }
1966  av_freep(&ctx->raw_mantissa);
1967  }
1968  av_freep(&ctx->larray);
1969  av_freep(&ctx->nbits);
1970 
1971  return 0;
1972 }
1973 
1974 
1975 /** Initialize the ALS decoder.
1976  */
1978 {
1979  unsigned int c;
1980  unsigned int channel_size;
1981  int num_buffers, ret;
1982  ALSDecContext *ctx = avctx->priv_data;
1983  ALSSpecificConfig *sconf = &ctx->sconf;
1984  ctx->avctx = avctx;
1985 
1986  if (!avctx->extradata) {
1987  av_log(avctx, AV_LOG_ERROR, "Missing required ALS extradata.\n");
1988  return AVERROR_INVALIDDATA;
1989  }
1990 
1991  if ((ret = read_specific_config(ctx)) < 0) {
1992  av_log(avctx, AV_LOG_ERROR, "Reading ALSSpecificConfig failed.\n");
1993  goto fail;
1994  }
1995 
1996  if ((ret = check_specific_config(ctx)) < 0) {
1997  goto fail;
1998  }
1999 
2000  if (sconf->bgmc) {
2001  ret = ff_bgmc_init(avctx, &ctx->bgmc_lut, &ctx->bgmc_lut_status);
2002  if (ret < 0)
2003  goto fail;
2004  }
2005  if (sconf->floating) {
2006  avctx->sample_fmt = AV_SAMPLE_FMT_FLT;
2007  avctx->bits_per_raw_sample = 32;
2008  } else {
2009  avctx->sample_fmt = sconf->resolution > 1
2011  avctx->bits_per_raw_sample = (sconf->resolution + 1) * 8;
2012  if (avctx->bits_per_raw_sample > 32) {
2013  av_log(avctx, AV_LOG_ERROR, "Bits per raw sample %d larger than 32.\n",
2014  avctx->bits_per_raw_sample);
2015  ret = AVERROR_INVALIDDATA;
2016  goto fail;
2017  }
2018  }
2019 
2020  // set maximum Rice parameter for progressive decoding based on resolution
2021  // This is not specified in 14496-3 but actually done by the reference
2022  // codec RM22 revision 2.
2023  ctx->s_max = sconf->resolution > 1 ? 31 : 15;
2024 
2025  // set lag value for long-term prediction
2026  ctx->ltp_lag_length = 8 + (avctx->sample_rate >= 96000) +
2027  (avctx->sample_rate >= 192000);
2028 
2029  // allocate quantized parcor coefficient buffer
2030  num_buffers = sconf->mc_coding ? avctx->channels : 1;
2031  if (num_buffers * (uint64_t)num_buffers > INT_MAX) // protect chan_data_buffer allocation
2032  return AVERROR_INVALIDDATA;
2033 
2034  ctx->quant_cof = av_malloc_array(num_buffers, sizeof(*ctx->quant_cof));
2035  ctx->lpc_cof = av_malloc_array(num_buffers, sizeof(*ctx->lpc_cof));
2036  ctx->quant_cof_buffer = av_malloc_array(num_buffers * sconf->max_order,
2037  sizeof(*ctx->quant_cof_buffer));
2038  ctx->lpc_cof_buffer = av_malloc_array(num_buffers * sconf->max_order,
2039  sizeof(*ctx->lpc_cof_buffer));
2041  sizeof(*ctx->lpc_cof_buffer));
2042 
2043  if (!ctx->quant_cof || !ctx->lpc_cof ||
2044  !ctx->quant_cof_buffer || !ctx->lpc_cof_buffer ||
2045  !ctx->lpc_cof_reversed_buffer) {
2046  av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
2047  ret = AVERROR(ENOMEM);
2048  goto fail;
2049  }
2050 
2051  // assign quantized parcor coefficient buffers
2052  for (c = 0; c < num_buffers; c++) {
2053  ctx->quant_cof[c] = ctx->quant_cof_buffer + c * sconf->max_order;
2054  ctx->lpc_cof[c] = ctx->lpc_cof_buffer + c * sconf->max_order;
2055  }
2056 
2057  // allocate and assign lag and gain data buffer for ltp mode
2058  ctx->const_block = av_malloc_array(num_buffers, sizeof(*ctx->const_block));
2059  ctx->shift_lsbs = av_malloc_array(num_buffers, sizeof(*ctx->shift_lsbs));
2060  ctx->opt_order = av_malloc_array(num_buffers, sizeof(*ctx->opt_order));
2061  ctx->store_prev_samples = av_malloc_array(num_buffers, sizeof(*ctx->store_prev_samples));
2062  ctx->use_ltp = av_mallocz_array(num_buffers, sizeof(*ctx->use_ltp));
2063  ctx->ltp_lag = av_malloc_array(num_buffers, sizeof(*ctx->ltp_lag));
2064  ctx->ltp_gain = av_malloc_array(num_buffers, sizeof(*ctx->ltp_gain));
2065  ctx->ltp_gain_buffer = av_malloc_array(num_buffers * 5, sizeof(*ctx->ltp_gain_buffer));
2066 
2067  if (!ctx->const_block || !ctx->shift_lsbs ||
2068  !ctx->opt_order || !ctx->store_prev_samples ||
2069  !ctx->use_ltp || !ctx->ltp_lag ||
2070  !ctx->ltp_gain || !ctx->ltp_gain_buffer) {
2071  av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
2072  ret = AVERROR(ENOMEM);
2073  goto fail;
2074  }
2075 
2076  for (c = 0; c < num_buffers; c++)
2077  ctx->ltp_gain[c] = ctx->ltp_gain_buffer + c * 5;
2078 
2079  // allocate and assign channel data buffer for mcc mode
2080  if (sconf->mc_coding) {
2081  ctx->chan_data_buffer = av_mallocz_array(num_buffers * num_buffers,
2082  sizeof(*ctx->chan_data_buffer));
2083  ctx->chan_data = av_mallocz_array(num_buffers,
2084  sizeof(*ctx->chan_data));
2085  ctx->reverted_channels = av_malloc_array(num_buffers,
2086  sizeof(*ctx->reverted_channels));
2087 
2088  if (!ctx->chan_data_buffer || !ctx->chan_data || !ctx->reverted_channels) {
2089  av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
2090  ret = AVERROR(ENOMEM);
2091  goto fail;
2092  }
2093 
2094  for (c = 0; c < num_buffers; c++)
2095  ctx->chan_data[c] = ctx->chan_data_buffer + c * num_buffers;
2096  } else {
2097  ctx->chan_data = NULL;
2098  ctx->chan_data_buffer = NULL;
2099  ctx->reverted_channels = NULL;
2100  }
2101 
2102  channel_size = sconf->frame_length + sconf->max_order;
2103 
2104  ctx->prev_raw_samples = av_malloc_array(sconf->max_order, sizeof(*ctx->prev_raw_samples));
2105  ctx->raw_buffer = av_mallocz_array(avctx->channels * channel_size, sizeof(*ctx->raw_buffer));
2106  ctx->raw_samples = av_malloc_array(avctx->channels, sizeof(*ctx->raw_samples));
2107 
2108  if (sconf->floating) {
2109  ctx->acf = av_malloc_array(avctx->channels, sizeof(*ctx->acf));
2110  ctx->shift_value = av_malloc_array(avctx->channels, sizeof(*ctx->shift_value));
2111  ctx->last_shift_value = av_malloc_array(avctx->channels, sizeof(*ctx->last_shift_value));
2112  ctx->last_acf_mantissa = av_malloc_array(avctx->channels, sizeof(*ctx->last_acf_mantissa));
2113  ctx->raw_mantissa = av_mallocz_array(avctx->channels, sizeof(*ctx->raw_mantissa));
2114 
2115  ctx->larray = av_malloc_array(ctx->cur_frame_length * 4, sizeof(*ctx->larray));
2116  ctx->nbits = av_malloc_array(ctx->cur_frame_length, sizeof(*ctx->nbits));
2117  ctx->mlz = av_mallocz(sizeof(*ctx->mlz));
2118 
2119  if (!ctx->mlz || !ctx->acf || !ctx->shift_value || !ctx->last_shift_value
2120  || !ctx->last_acf_mantissa || !ctx->raw_mantissa) {
2121  av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
2122  ret = AVERROR(ENOMEM);
2123  goto fail;
2124  }
2125 
2126  ff_mlz_init_dict(avctx, ctx->mlz);
2127  ff_mlz_flush_dict(ctx->mlz);
2128 
2129  for (c = 0; c < avctx->channels; ++c) {
2130  ctx->raw_mantissa[c] = av_mallocz_array(ctx->cur_frame_length, sizeof(**ctx->raw_mantissa));
2131  }
2132  }
2133 
2134  // allocate previous raw sample buffer
2135  if (!ctx->prev_raw_samples || !ctx->raw_buffer|| !ctx->raw_samples) {
2136  av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
2137  ret = AVERROR(ENOMEM);
2138  goto fail;
2139  }
2140 
2141  // assign raw samples buffers
2142  ctx->raw_samples[0] = ctx->raw_buffer + sconf->max_order;
2143  for (c = 1; c < avctx->channels; c++)
2144  ctx->raw_samples[c] = ctx->raw_samples[c - 1] + channel_size;
2145 
2146  // allocate crc buffer
2147  if (HAVE_BIGENDIAN != sconf->msb_first && sconf->crc_enabled &&
2150  avctx->channels *
2152  sizeof(*ctx->crc_buffer));
2153  if (!ctx->crc_buffer) {
2154  av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
2155  ret = AVERROR(ENOMEM);
2156  goto fail;
2157  }
2158  }
2159 
2160  ff_bswapdsp_init(&ctx->bdsp);
2161 
2162  return 0;
2163 
2164 fail:
2165  return ret;
2166 }
2167 
2168 
2169 /** Flush (reset) the frame ID after seeking.
2170  */
2171 static av_cold void flush(AVCodecContext *avctx)
2172 {
2173  ALSDecContext *ctx = avctx->priv_data;
2174 
2175  ctx->frame_id = 0;
2176 }
2177 
2178 
2180  .name = "als",
2181  .long_name = NULL_IF_CONFIG_SMALL("MPEG-4 Audio Lossless Coding (ALS)"),
2182  .type = AVMEDIA_TYPE_AUDIO,
2183  .id = AV_CODEC_ID_MP4ALS,
2184  .priv_data_size = sizeof(ALSDecContext),
2185  .init = decode_init,
2186  .close = decode_end,
2187  .decode = decode_frame,
2188  .flush = flush,
2189  .capabilities = AV_CODEC_CAP_SUBFRAMES | AV_CODEC_CAP_DR1,
2190  .caps_internal = FF_CODEC_CAP_INIT_CLEANUP,
2191 };
#define FF_CODEC_CAP_INIT_CLEANUP
The codec allows calling the close function for deallocation even if the init function returned a fai...
Definition: internal.h:48
#define MUL64(a, b)
Definition: mathops.h:54
#define FF_SANE_NB_CHANNELS
Definition: internal.h:97
AVCodec ff_als_decoder
Definition: alsdec.c:2179
static int als_weighting(GetBitContext *gb, int k, int off)
Definition: alsdec.c:1218
static int decode_var_block_data(ALSDecContext *ctx, ALSBlockData *bd)
Decode the block data for a non-constant block.
Definition: alsdec.c:903
int msb_first
1 = original CRC calculated on big-endian system, 0 = little-endian
Definition: alsdec.c:162
#define NULL
Definition: coverity.c:32
unsigned char * larray
buffer to store the output of masked lz decompression
Definition: alsdec.c:237
#define AVERROR_INVALIDDATA
Invalid data found when processing input.
Definition: error.h:59
static int shift(int a, int b)
Definition: sonic.c:82
This structure describes decoded (raw) audio or video data.
Definition: frame.h:300
int * use_ltp
contains use_ltp flags for all channels
Definition: alsdec.c:215
av_cold void ff_bgmc_end(uint8_t **cf_lut, int **cf_lut_status)
Release the lookup table arrays.
Definition: bgmc.c:480
MLZ * mlz
masked lz decompression structure
Definition: alsdec.c:231
int32_t ** raw_samples
decoded raw samples for each channel
Definition: alsdec.c:228
uint8_t * crc_buffer
buffer of byte order corrected samples used for CRC check
Definition: alsdec.c:230
static unsigned int get_bits(GetBitContext *s, int n)
Read 1-25 bits.
Definition: get_bits.h:379
#define AV_LOG_WARNING
Something somehow does not look correct.
Definition: log.h:182
static const int16_t mcc_weightings[]
Inter-channel weighting factors for multi-channel correlation.
Definition: alsdec.c:121
static void skip_bits_long(GetBitContext *s, int n)
Skips the specified number of bits.
Definition: get_bits.h:291
static av_cold int init(AVCodecContext *avctx)
Definition: avrndec.c:35
int acc
Definition: yuv2rgb.c:555
#define avpriv_request_sample(...)
int block_switching
number of block switching levels
Definition: alsdec.c:170
int rlslms
use "Recursive Least Square-Least Mean Square" predictor: 1 = on, 0 = off
Definition: alsdec.c:177
int size
Definition: packet.h:356
const char * b
Definition: vf_curves.c:116
static int check_specific_config(ALSDecContext *ctx)
Check the ALSSpecificConfig for unsupported features.
Definition: alsdec.c:446
#define av_bswap16
Definition: bswap.h:31
int adapt_order
adaptive order: 1 = on, 0 = off
Definition: alsdec.c:166
static int read_frame_data(ALSDecContext *ctx, unsigned int ra_frame)
Read the frame data.
Definition: alsdec.c:1629
int32_t * lpc_cof_reversed_buffer
temporary buffer to set up a reversed versio of lpc_cof_buffer
Definition: alsdec.c:223
GetBitContext gb
Definition: alsdec.c:197
Block Gilbert-Moore decoder header.
int * nbits
contains the number of bits to read for masked lz decompression for all samples
Definition: alsdec.c:238
const char * master
Definition: vf_curves.c:117
unsigned int js_switch
if true, joint-stereo decoding is enforced
Definition: alsdec.c:204
int bits_per_raw_sample
Bits per sample/pixel of internal libavcodec pixel/sample format.
Definition: avcodec.h:1757
static int read_decode_block(ALSDecContext *ctx, ALSBlockData *bd)
Read and decode block data successively.
Definition: alsdec.c:1065
static void error(const char *err)
#define INTERLEAVE_OUTPUT(bps)
#define sample
AVCodec.
Definition: codec.h:190
static void decode(AVCodecContext *dec_ctx, AVPacket *pkt, AVFrame *frame, FILE *outfile)
Definition: decode_audio.c:71
static int32_t decode_rice(GetBitContext *gb, unsigned int k)
Read and decode a Rice codeword.
Definition: alsdec.c:493
static int get_sbits_long(GetBitContext *s, int n)
Read 0-32 bits as a signed integer.
Definition: get_bits.h:590
uint8_t base
Definition: vp3data.h:202
int * ltp_lag
contains ltp lag values for all channels
Definition: alsdec.c:216
int * const_block
contains const_block flags for all channels
Definition: alsdec.c:211
static const uint8_t ltp_gain_values[4][4]
Gain values of p(0) for long-term prediction.
Definition: alsdec.c:110
static const SoftFloat FLOAT_0
0.0
Definition: softfloat.h:39
#define av_assert0(cond)
assert() equivalent, that is always enabled.
Definition: avassert.h:37
static av_cold int decode_init(AVCodecContext *avctx)
Initialize the ALS decoder.
Definition: alsdec.c:1977
BswapDSPContext bdsp
Definition: alsdec.c:198
static char buffer[20]
Definition: seek.c:32
int32_t * lpc_cof
coefficients of the direct form prediction
Definition: alsdec.c:255
enum AVSampleFormat sample_fmt
audio sample format
Definition: avcodec.h:1194
uint8_t
#define av_cold
Definition: attributes.h:88
int avpriv_mpeg4audio_get_config2(MPEG4AudioConfig *c, const uint8_t *buf, int size, int sync_extension, void *logctx)
Parse MPEG-4 systems extradata from a raw buffer to retrieve audio configuration. ...
Definition: mpeg4audio.c:177
static void decode_const_block_data(ALSDecContext *ctx, ALSBlockData *bd)
Decode the block data for a constant block.
Definition: alsdec.c:614
float delta
void(* bswap_buf)(uint32_t *dst, const uint32_t *src, int w)
Definition: bswapdsp.h:25
#define AV_RB32
Definition: intreadwrite.h:130
static av_cold int end(AVCodecContext *avctx)
Definition: avrndec.c:92
int ** ltp_gain
gain values for ltp 5-tap filter for a channel
Definition: alsdec.c:217
static SoftFloat_IEEE754 av_bits2sf_ieee754(uint32_t n)
Make a softfloat out of the bitstream.
uint8_t * extradata
some codecs need / can use extradata like Huffman tables.
Definition: avcodec.h:627
int chan_sort
channel rearrangement: 1 = on, 0 = off
Definition: alsdec.c:176
static AVFrame * frame
int joint_stereo
joint stereo: 1 = on, 0 = off
Definition: alsdec.c:173
Public header for CRC hash function implementation.
static SoftFloat_IEEE754 av_int2sf_ieee754(int64_t n, int e)
Convert integer to softfloat.
const char data[16]
Definition: mxf.c:91
uint8_t * data
Definition: packet.h:355
static int get_bits_count(const GetBitContext *s)
Definition: get_bits.h:219
#define ff_dlog(a,...)
bitstream reader API header.
static int decode_blocks_ind(ALSDecContext *ctx, unsigned int ra_frame, unsigned int c, const unsigned int *div_blocks, unsigned int *js_blocks)
Decode blocks independently.
Definition: alsdec.c:1094
unsigned int block_length
number of samples within the block
Definition: alsdec.c:244
static void zero_remaining(unsigned int b, unsigned int b_max, const unsigned int *div_blocks, int32_t *buf)
Compute the number of samples left to decode for the current frame and sets these samples to zero...
Definition: alsdec.c:1079
#define max(a, b)
Definition: cuda_runtime.h:33
int ra_distance
distance between RA frames (in frames, 0...255)
Definition: alsdec.c:164
int weighting[6]
Definition: alsdec.c:190
channels
Definition: aptx.h:33
int32_t * quant_cof_buffer
contains all quantized parcor coefficients
Definition: alsdec.c:220
signed 32 bits
Definition: samplefmt.h:62
ALSChannelData * chan_data_buffer
contains channel data for all channels
Definition: alsdec.c:225
#define av_log(a,...)
int bgmc
"Block Gilbert-Moore Code": 1 = on, 0 = off (Rice coding only)
Definition: alsdec.c:171
#define U(x)
Definition: vp56_arith.h:37
#define src
Definition: vp8dsp.c:254
MLZDict * dict
Definition: mlz.h:54
unsigned int cs_switch
if true, channel rearrangement is done
Definition: alsdec.c:205
static int get_bits_left(GetBitContext *gb)
Definition: get_bits.h:849
int * use_ltp
if true, long-term prediction is used
Definition: alsdec.c:251
enum RA_Flag ra_flag
indicates where the size of ra units is stored
Definition: alsdec.c:165
#define i(width, name, range_min, range_max)
Definition: cbs_h2645.c:269
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
Definition: log.h:176
int ltp_lag_length
number of bits used for ltp lag value
Definition: alsdec.c:210
#define PTRDIFF_SPECIFIER
Definition: internal.h:263
#define AVERROR(e)
Definition: error.h:43
static av_cold void dprint_specific_config(ALSDecContext *ctx)
Definition: alsdec.c:262
unsigned int * opt_order
prediction order of this block
Definition: alsdec.c:249
int * chan_pos
original channel positions
Definition: alsdec.c:179
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification. ...
Definition: internal.h:188
AVCodecContext * avctx
Definition: alsdec.c:195
static const int16_t parcor_scaled_values[]
Scaled PARCOR values used for the first two PARCOR coefficients.
Definition: alsdec.c:71
static const SoftFloat FLOAT_1
1.0
Definition: softfloat.h:41
const char * r
Definition: vf_curves.c:114
static SoftFloat_IEEE754 multiply(SoftFloat_IEEE754 a, SoftFloat_IEEE754 b)
multiply two softfloats and handle the rounding off
Definition: alsdec.c:1387
int32_t ** lpc_cof
coefficients of the direct form prediction filter for a channel
Definition: alsdec.c:221
static int read_diff_float_data(ALSDecContext *ctx, unsigned int ra_frame)
Read and decode the floating point sample data.
Definition: alsdec.c:1446
int chan_config_info
mapping of channels to loudspeaker locations. Unused until setting channel configuration is implement...
Definition: alsdec.c:178
unsigned int num_blocks
number of blocks used in the current frame
Definition: alsdec.c:206
void * av_mallocz(size_t size)
Allocate a memory block with alignment suitable for all memory accesses (including vectors if availab...
Definition: mem.c:237
const char * name
Name of the codec implementation.
Definition: codec.h:197
int32_t * prev_raw_samples
contains unshifted raw samples from the previous block
Definition: alsdec.c:227
static int decode_blocks(ALSDecContext *ctx, unsigned int ra_frame, unsigned int c, const unsigned int *div_blocks, unsigned int *js_blocks)
Decode blocks dependently.
Definition: alsdec.c:1134
void ff_bgmc_decode_end(GetBitContext *gb)
Finish decoding.
Definition: bgmc.c:503
const AVCRC * crc_table
Definition: alsdec.c:199
static const uint8_t offset[127][2]
Definition: vf_spp.c:93
#define FFMAX(a, b)
Definition: common.h:94
int * bgmc_lut_status
pointer at lookup table status flags used for BGMC
Definition: alsdec.c:209
#define fail()
Definition: checkasm.h:123
ALSSpecificConfig sconf
Definition: alsdec.c:196
int * store_prev_samples
if true, carryover samples have to be stored
Definition: alsdec.c:250
unsigned int * shift_lsbs
contains shift_lsbs flags for all channels
Definition: alsdec.c:212
int err_recognition
Error recognition; may misdetect some more or less valid parts as errors.
Definition: avcodec.h:1655
#define FFMIN(a, b)
Definition: common.h:96
static int read_var_block_data(ALSDecContext *ctx, ALSBlockData *bd)
Read the block data for a non-constant block.
Definition: alsdec.c:628
int ff_mlz_decompression(MLZ *mlz, GetBitContext *gb, int size, unsigned char *buff)
Run mlz decompression on the next size bits and the output will be stored in buff.
Definition: mlz.c:123
int chan_config
indicates that a chan_config_info field is present
Definition: alsdec.c:175
int32_t
AVFormatContext * ctx
Definition: movenc.c:48
#define EXP_BIAS
uint32_t av_crc(const AVCRC *ctx, uint32_t crc, const uint8_t *buffer, size_t length)
Calculate the CRC of a block.
Definition: crc.c:392
int * last_shift_value
contains last shift value for all channels
Definition: alsdec.c:235
static int av_cmp_sf_ieee754(SoftFloat_IEEE754 a, SoftFloat_IEEE754 b)
Compare a with b strictly.
#define s(width, name)
Definition: cbs_vp9.c:257
void ff_bgmc_decode(GetBitContext *gb, unsigned int num, int32_t *dst, int delta, unsigned int sx, unsigned int *h, unsigned int *l, unsigned int *v, uint8_t *cf_lut, int *cf_lut_status)
Read and decode a block Gilbert-Moore coded symbol.
Definition: bgmc.c:510
static av_cold int decode_end(AVCodecContext *avctx)
Uninitialize the ALS decoder.
Definition: alsdec.c:1925
int * const_block
if true, this is a constant value block
Definition: alsdec.c:246
#define AV_EF_EXPLODE
abort decoding on minor error detection
Definition: avcodec.h:1666
int floating
1 = IEEE 32-bit floating-point, 0 = integer
Definition: alsdec.c:161
int time_diff_flag
Definition: alsdec.c:187
SoftFloat_IEEE754 * acf
contains common multiplier for all channels
Definition: alsdec.c:232
int master_channel
Definition: alsdec.c:186
uint32_t crc
CRC value calculated from decoded data.
Definition: alsdec.c:201
int coef_table
table index of Rice code parameters
Definition: alsdec.c:167
static int read_const_block_data(ALSDecContext *ctx, ALSBlockData *bd)
Read the block data for a constant block.
Definition: alsdec.c:584
#define FF_ARRAY_ELEMS(a)
#define av_log2
Definition: intmath.h:83
int sb_part
sub-block partition
Definition: alsdec.c:172
MLZ data strucure.
Definition: mlz.h:47
int32_t * raw_other
decoded raw samples of the other channel of a channel pair
Definition: alsdec.c:258
uint8_t * bgmc_lut
pointer at lookup tables used for BGMC
Definition: alsdec.c:208
av_cold void ff_mlz_init_dict(void *context, MLZ *mlz)
Initialize the dictionary.
Definition: mlz.c:23
#define AVERROR_PATCHWELCOME
Not yet implemented in FFmpeg, patches welcome.
Definition: error.h:62
int * ltp_gain
gain values for ltp 5-tap filter
Definition: alsdec.c:253
int js_blocks
true if this block contains a difference signal
Definition: alsdec.c:247
#define av_bswap32
Definition: bswap.h:33
unsigned int ra_block
if true, this is a random access block
Definition: alsdec.c:245
Libavcodec external API header.
static void parcor_to_lpc(unsigned int k, const int32_t *par, int32_t *cof)
Convert PARCOR coefficient k to direct filter coefficient.
Definition: alsdec.c:511
int * shift_value
value by which the binary point is to be shifted for all channels
Definition: alsdec.c:234
int sample_rate
samples per second
Definition: avcodec.h:1186
static int init_get_bits8(GetBitContext *s, const uint8_t *buffer, int byte_size)
Initialize GetBitContext.
Definition: get_bits.h:677
#define abs(x)
Definition: cuda_runtime.h:35
main external API structure.
Definition: avcodec.h:526
ALSChannelData ** chan_data
channel data for multi-channel correlation
Definition: alsdec.c:224
static int decode_frame(AVCodecContext *avctx, void *data, int *got_frame_ptr, AVPacket *avpkt)
Decode an ALS frame.
Definition: alsdec.c:1786
int ff_get_buffer(AVCodecContext *avctx, AVFrame *frame, int flags)
Get a buffer for a frame.
Definition: decode.c:1854
#define MISSING_ERR(cond, str, errval)
int extradata_size
Definition: avcodec.h:628
#define AV_EF_CAREFUL
consider things that violate the spec, are fast to calculate and have not been seen in the wild as er...
Definition: avcodec.h:1669
int highest_decoded_channel
Definition: alsdec.c:239
static unsigned int get_bits1(GetBitContext *s)
Definition: get_bits.h:498
static void skip_bits1(GetBitContext *s)
Definition: get_bits.h:538
double value
Definition: eval.c:98
unsigned int s_max
maximum Rice parameter allowed in entropy coding
Definition: alsdec.c:207
static void skip_bits(GetBitContext *s, int n)
Definition: get_bits.h:467
#define AV_CODEC_CAP_SUBFRAMES
Codec can output multiple frames per AVPacket Normally demuxers return one frame at a time...
Definition: codec.h:93
int * ltp_lag
lag value for long-term prediction
Definition: alsdec.c:252
int32_t * lpc_cof_buffer
contains all coefficients of the direct form prediction filter
Definition: alsdec.c:222
#define AV_EF_CRCCHECK
Verify checksums embedded in the bitstream (could be of either encoded or decoded data...
Definition: avcodec.h:1663
static const int8_t parcor_rice_table[3][20][2]
Rice parameters and corresponding index offsets for decoding the indices of scaled PARCOR values...
Definition: alsdec.c:50
RA_Flag
Definition: alsdec.c:151
static av_cold int read_specific_config(ALSDecContext *ctx)
Read an ALSSpecificConfig from a buffer into the output struct.
Definition: alsdec.c:292
static unsigned int get_bits_long(GetBitContext *s, int n)
Read 0-32 bits.
Definition: get_bits.h:546
int long_term_prediction
long term prediction (LTP): 1 = on, 0 = off
Definition: alsdec.c:168
int32_t * raw_samples
decoded raw samples / residuals for this block
Definition: alsdec.c:256
int * reverted_channels
stores a flag for each reverted channel
Definition: alsdec.c:226
int ff_bgmc_decode_init(GetBitContext *gb, unsigned int *h, unsigned int *l, unsigned int *v)
Initialize decoding and reads the first value.
Definition: bgmc.c:488
int * last_acf_mantissa
contains the last acf mantissa data of common multiplier for all channels
Definition: alsdec.c:233
unsigned int * opt_order
contains opt_order flags for all channels
Definition: alsdec.c:213
int32_t * raw_buffer
contains all decoded raw samples including carryover samples
Definition: alsdec.c:229
int max_order
maximum prediction order (0..1023)
Definition: alsdec.c:169
uint32_t samples
number of samples, 0xFFFFFFFF if unknown
Definition: alsdec.c:159
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
Definition: frame.h:314
int av_get_bytes_per_sample(enum AVSampleFormat sample_fmt)
Return number of bytes per sample.
Definition: samplefmt.c:106
const AVCRC * av_crc_get_table(AVCRCId crc_id)
Get an initialized standard CRC table.
Definition: crc.c:374
int mc_coding
extended inter-channel coding (multi channel coding): 1 = on, 0 = off
Definition: alsdec.c:174
int
static const uint8_t tail_code[16][6]
Tail codes used in arithmetic coding using block Gilbert-Moore codes.
Definition: alsdec.c:131
common internal api header.
if(ret< 0)
Definition: vf_mcdeint.c:279
int32_t * prev_raw_samples
contains unshifted raw samples from the previous block
Definition: alsdec.c:257
static int get_unary(GetBitContext *gb, int stop, int len)
Get unary code of limited length.
Definition: unary.h:46
av_cold void ff_mlz_flush_dict(MLZ *mlz)
Flush the dictionary.
Definition: mlz.c:35
static av_cold void flush(AVCodecContext *avctx)
Flush (reset) the frame ID after seeking.
Definition: alsdec.c:2171
signed 16 bits
Definition: samplefmt.h:61
static double c[64]
int time_diff_index
Definition: alsdec.c:189
int * ltp_gain_buffer
contains all gain values for ltp 5-tap filter
Definition: alsdec.c:218
int32_t * quant_cof
quantized parcor coefficients
Definition: alsdec.c:254
#define MKBETAG(a, b, c, d)
Definition: common.h:407
static void parse_bs_info(const uint32_t bs_info, unsigned int n, unsigned int div, unsigned int **div_blocks, unsigned int *num_blocks)
Parse the bs_info field to extract the block partitioning used in block switching mode...
Definition: alsdec.c:470
av_cold void ff_bswapdsp_init(BswapDSPContext *c)
Definition: bswapdsp.c:49
void * priv_data
Definition: avcodec.h:553
int32_t ** quant_cof
quantized parcor coefficients for a channel
Definition: alsdec.c:219
int channels
number of audio channels
Definition: avcodec.h:1187
int crc_enabled
enable Cyclic Redundancy Checksum
Definition: alsdec.c:180
int ** raw_mantissa
decoded mantissa bits of the difference signal
Definition: alsdec.c:236
uint32_t crc_org
CRC value of the original input data.
Definition: alsdec.c:200
static int decode_block(ALSDecContext *ctx, ALSBlockData *bd)
Decode the block data.
Definition: alsdec.c:1039
static int read_block(ALSDecContext *ctx, ALSBlockData *bd)
Read the block data.
Definition: alsdec.c:1012
int frame_length
frame length for each frame (last frame may differ)
Definition: alsdec.c:163
static const uint8_t * align_get_bits(GetBitContext *s)
Definition: get_bits.h:693
int stop_flag
Definition: alsdec.c:185
static const struct twinvq_data tab
unsigned int * shift_lsbs
shift of values for this block
Definition: alsdec.c:248
#define av_freep(p)
av_cold int ff_bgmc_init(AVCodecContext *avctx, uint8_t **cf_lut, int **cf_lut_status)
Initialize the lookup table arrays.
Definition: bgmc.c:460
#define av_malloc_array(a, b)
#define HAVE_BIGENDIAN
Definition: config.h:199
static int read_channel_data(ALSDecContext *ctx, ALSChannelData *cd, int c)
Read the channel data.
Definition: alsdec.c:1227
static void get_block_sizes(ALSDecContext *ctx, unsigned int *div_blocks, uint32_t *bs_info)
Read block switching field if necessary and set actual block sizes.
Definition: alsdec.c:531
int * store_prev_samples
contains store_prev_samples flags for all channels
Definition: alsdec.c:214
static SoftFloat_IEEE754 av_div_sf_ieee754(SoftFloat_IEEE754 a, SoftFloat_IEEE754 b)
Divide a by b.
unsigned int frame_id
the frame ID / number of the current frame
Definition: alsdec.c:203
static int revert_channel_correlation(ALSDecContext *ctx, ALSBlockData *bd, ALSChannelData **cd, int *reverted, unsigned int offset, int c)
Recursively reverts the inter-channel correlation for a block.
Definition: alsdec.c:1274
static double val(void *priv, double ch)
Definition: aeval.c:76
This structure stores compressed data.
Definition: packet.h:332
int nb_samples
number of audio samples (per channel) described by this frame
Definition: frame.h:366
uint32_t AVCRC
Definition: crc.h:47
#define AV_CODEC_CAP_DR1
Codec uses get_buffer() for allocating buffers and supports custom allocators.
Definition: codec.h:50
for(j=16;j >0;--j)
unsigned int cur_frame_length
length of the current frame to decode
Definition: alsdec.c:202
static av_always_inline int get_bitsz(GetBitContext *s, int n)
Read 0-25 bits.
Definition: get_bits.h:415
int resolution
000 = 8-bit; 001 = 16-bit; 010 = 24-bit; 011 = 32-bit
Definition: alsdec.c:160
void * av_mallocz_array(size_t nmemb, size_t size)
Allocate a memory block for an array with av_mallocz().
Definition: mem.c:190
int time_diff_sign
Definition: alsdec.c:188