
RTLinux Version Two

Victor Yodaiken and Michael Barabanov VJY Associates LLC
yodaiken@rtlinux.com

c©VJY Associates LLC 1999. All rights reserved

WARNING. This is copyrighted material with all rights reserved. Please do not duplicate or
circulate without permission of the author. WARNING 2. This is an in-progress design

document. Things may not work this way for long if they ever did.

1 Introduction

RTLinux is the hard realtime variant of Linux that makes it possible to control robots, data acquisi-
tion systems, manufacturing plants, and other time-sensitive instruments and machines. Version
1 of RTLinux was designed to run on low end x86 based computers and provided a spartan API
and programming environment. Version 2 RTLinux is a complete rewrite, designed support sym-
metric multiprocessing, to run on a larger range of systems, and with extensions for ease of use.
In this paper, we will discuss the new system and its API with particular attention to the problems
of increasing ease of use and adherence to standards, without performance compromise.

RTLinux provides the capability of running special realtime tasks and interrupt handlers
on the same machine as standard Linux. These tasks and handlers execute when they need to
execute no matter what Linux is doing. The worst case time between the moment a hardware
interrupt is detected by the processor and the moment an interrupt handler starts to execute is
under 15 microseconds on RTLinux running on a generic x86. A RTLinux periodic task runs within
25 microseconds of its scheduled time on the same hardware. These times are hardware limited,
and as hardware improves RTLinux will also improve. Standard Linux has excellent average per-
formance and can even provide millisecond level scheduling precision for tasks using the POSIX
soft realtime capabilities. Standard Linux is not, however, designed to provide submillisecond
precision and reliable timing guarantees.

RTLinux Version Two is structured as a small core component and a set of optional com-
ponents.

• The core component permits installation of very low latency interrupt handlers that cannot
be delayed or preempted by Linux itself and some low level synchronization and interrupt
control routines. This core component has been extended to support SMP and at the same
time it has been simplified by removing some functionality that can be provided outside the
core.

• The majority of RTLinux functionality is in a collection of loadable kernel modules that pro-
vide optional services and levels of abstraction. These modules include.

1. rtl sched a priority scheduler that supports both a “lite POSIX” interface described
below and the original V1 RTLinux API.

2. rtl timewhich controls the processor clocks and exports an abstract interface for con-
necting handlers to clocks.

3. rtl posixio supports POSIX style read/write/open interface to device drivers.

4. rtl fifo connects RT tasks and interrupt handlers to Linux processes through a device
layer so that Linux processes can read/write to RT components.

1

5. semaphore is a contributed package by Jerry Epplin which gives RT tasks blocking
semaphores. POSIX mutex support is planned to be available in the next minor ver-
sion update of RTLinux.

6. mbuff is a contributed package written by Tomasz Motylewski for providing shared
memory between RT components and Linux processes.

The key RTLinux design objective is that the system should be transparent, modular, and
extensible. Transparency means that there are no unopenable black boxes and the cost of any
operation should be determinable. Modularity means that it is possible to omit functionality
and the expense of that functionality if it is not needed. The base RTLinux system supports high
speed interrupt handling and no more. And extensibility means that programmers should be able
to add modules and tailor the system to their requirements. As the obvious example, the RTLinux
simple priority scheduler can be easily replaced by schedulers more suited to the needs of some
specific application.

When developing RTLinux we have tried to maximize the advantage we get from having
Linux and its powerful capabilities available. In fact RTLinux development rule number 1 is:

If a service or operation is inherently non-realtime, it should be provided in Linux and
not in the RT components.

The remainder of this note is in XXX sections. In section 2 we explain why POSIX-style
API is provided by RTLinux V2 and how we have tailored our implementation to meet the goals
of compliance and performance. Section 3 covers the low level core API and the timer module.
Section 4 introduces the API of the default scheduler and describes how alternate schedulers can
be implemented. Section 5 describes the POSIX I/O structure in RTLinux and two critical drivers.

2 POSIX

2.1 General considerations

The POSIX 1003.1 realtime standard is both impossible and necessary for hard realtime. The stan-
dard is impossible because a straightforward implementation of, for example, a POSIX filesystem,
imposes open ended computing and resource commitments that a hard realtime system cannot
provide. The standard is necessary because it provides the only widely accepted and used API for
realtime and because it facilitates connection and software migration between realtime and non-
realtime POSIX systems. Fortunately, the POSIX concept of an application environment profile[?]
provides a basis for reconciling POSIX and hard realtime.

Version 2.0 RTLinux moves towards the POSIX RealTime specification by following the
POSIX ”single process/minimal realtime system” model with some compatible extensions for
SMP1. The POSIX Draft standard identifies, in section 6, a ”Minimal Realtime System Profile”
(PSE51) intended for hard realtime systems like RTLinux. The ”rationale” given is that ”the
POSIX.1c Threads model (with all options enabled, but without a file system) best reflected cur-
rent industry practice in certain embedded realtime areas. Instead of full file system support,
basic device I/O (read, write, open, close, control) is considered sufficient for kernels of this size.
Systems of this size frequently do not include process isolation hardware or software; therefore,
multiple processes (as opposed to threads) may not be supported.” (Page 36).

1Specifications in this note are drawn from P1003.13 Draft 9 of the POSIX ”Draft Standard for Information Technology
– Standardized Application Profile – POSIX Realtime Applications Support (AEP).” (IEEE Std P1003.13-1999x) and from
the Single UNIX Specification available from http://www.opengroup.com.

2

2.2 Motivation

The switch to a POSIX style API was prompted by limitations of the original API, by user de-
mand, and by our intention to simplify mixed mode hard realtime/non-realtime programming
in a POSIX environment. As one benefit, we believe that the new API will make it relatively easy
to emulate the RTL environment from within a standard POSIX threads environment so RTLinux
code can be debugged in user mode as much as possible.

In implementing the POSIX API, we have made an effort to distinguish between critical
components and compatibility components based on an analysis of the wide range of aplications
including many implemented under the original, very simple, RTLinux API. Critical components
are components of the POSIX API that must be present for tightly designed hard realtime appli-
cations. Compatibility components are components that facilitate porting applications, but that
are not otherwise useful. As an example, POSIX real-time signals are compatibility components:
they are extremely useful for porting an application that uses them, but applications written from
scratch do not need them. Our guiding principle was that users of RTLinux should not be required
to pay a performance, programming, or memory penalty for compatibility components that were
part of POSIX, but not absolutely necessary for realtime applications. Some users will need full
POSIX conformance in order to port applications developed on other operating systems or due
to non-technical constraints, and we want to make this as convenient as possible. On the other
hand, native RTLinux applications, using a simpler API should not be required to use or even load
all the system support needed for full POSIX compliance. POSIX compatibility cannot be allowed
to degrade performance and that POSIX components that are inherently performance challenged
must be optional. That is, if you must use clumsy POSIX constructs, RTLinux will support you,
but you are not required to do so.

2.3 Scheduling

The V2 scheduling module treats a a scheduler and a collection of realtime tasks as a single POSIX
process, with tasks corresponding to POSIX threads. On an SMP system, a cluster, we may have
multiple schedulers running in parallel and each one looks like a POSIX process. These ”pro-
cesses” can share address space and even scheduler code on an SMP machine, but they are logi-
cally distinct. The scheduling module does not provide any support for moving threads from one
”process” to another and offers very limited support for controlling threads in one process from
another process. Additional cross-processor control can be easily obtained, if needed, by using
the primitives described below. Efficient cross-processor control is a difficult problem and we
were reluctant to introduce hidden synchronzation points or operations that would cause signif-
icant cache disruption — e.g by migrating tasks between processors.

2.4 Posixio

RTLinux Version 2.0 also introduces a posixio module which provides a standard interface for
drivers with POSIX style read/write/open I/O operations. The obvious difficulty for supporting
the POSIX file API is that open in a POSIX filesystem is inherently non-realtime. Opening a file may
require an unbounded traversal of the namespace, following symbolic links, resolving directories,
and crossing mount points. Fortunately, the authors of the POSIX standard permit a very limited
version of open in the minimal system. Section 6.3 ”Rationale” in the POSIX AEP document states:

”The open function is needed to do basic device I/O, also to provide device initial-
ization.” ”Although this requires some form of name resolution, a full pathname is
specifically not required. Directories are also not required.” (6.3.1.3 Files and directo-
ries)

3

The only pathnames supported in RTLinux are of the form ”/dev/name”. The only mode
supported is read/write.

2.5 Signals

One area of the POSIX standard we have not yet implemented is the requirement for asyn-
chronous signals.

[M]ost POSIX.1 process primitives to not apply.

but

”Signal services are a basic mechanism with POSIX based systems and are required for
error and event handling” (6.3.2.1 Realtime signals)

Our current intention is to make signals an optional component. The utility of general
asynchronous signalling mechanism in a hard realtime environment is not at all clear. The pur-
pose of such a mechanism is to interrupt the control flow of a thread and force it to an error or
event handling routine. Our belief is that the need for such a facility is an indication of a de-
sign error in the application. Realtime tasks should do some simple operation. They must be
deterministic and predictable. Thus, event handling via signals seems pointless. Events can be
handled by event handlers — hardware interrupt handlers or software event functions. If an event
can abort a long running operation, the event handler should suspend the task and possibly call
the scheduler. What about errors, such as floating point errrors? RTLinux design Rule Number
One is that nonrealtime services should not be provided in the realtime component. If a realtime
task uses FP, it should explicitly check for errors rather than allowing for a complex worst case FP
interrupt.

Thus, we consider realtime signals to be a compatibility component not a core component.
On the other hand, RTLinux does offer much of the signal capability in other forms. There are
routines in the API to suspend tasks, to awaken tasks, and to install and remove interrupt and
other event handlers.

3 Fundamental operations and timers

The RTLinux core provides operations to install, free, and direct, realtime interrupts and “soft”
interrupt facility for communicating with the Linux non-realtime kernel. The prototypes for the
core functions are in rtl/include/rtl core.h . These are low level operations that are seen by
device drivers and the scheduler, but not by tasks or interrupt handlers.

The code for a simple interrupt handler module might include the following code to set up
interrupt handling.

int init_module(void)
{

rtl_irqstate_t f;
rtl_no_interupts(f); /* disable interrupts on this CPU */
if (!rtl_request_irq(MY_DEVICE_IRQ_NUMBER,my_handler) {

do some hardware initialization
rtl_hard_enable_irq(MY_DEVICE_IRQ_NUMBER);

}
rtl_restore_interrupts(f);

}

4

The API for controlling the interrupt hardware is given below. We make a distinction be-
tween global interrupts that come in from shared devices and local interrupts that are either local
to the processor (such as an on-chip timer) or handled by a local interrupt controller (such as the
IPIs on Intel multiprocessors). Local and global irq numbers may overlap. Where local/global is
not specified, we assume global.

• Mode control.

– extern void rtl make rt system active(void);

– extern unsigned int rtl rt system is idle(void);

– extern void rtl make rt system idle(void);

These are used by schedulers to indicate that a realtime task is active, so that Linux inter-
rupts should not be allowed to invoke Linux interrupt handlers or to indicate that no task is
active and calling Linux handlers is ok.

• Special SMP operations.

– extern void rtl reschedule(unsigned int cpu id); Generate an interrupt to a
processor, causing the processor to run the realtime scheduler. This is an SMP only
routine.

– extern unsigned int rtl getcpuid(void); Return the current processor id.

• Communication with Linux interrupt handlers.

– extern int rtl get soft irq(void (*handler)(int, void *, struct
pt regs *), const char * devname); Allocate and install a handler for a soft inter-
rupt so that realtime tasks may send “interrupts” to Linux handlers.

– extern int rtl free soft irq(int irq);

– extern void rtl global pend irq(unsigned int irq) and
extern void rtl local pend vec(int intvec,int cpu id);
Send Linux a soft interrupt.

• Requesting and freeing hardware interrupts.

– extern int rtl request global irq(unsigned int irq, unsigned int
(*handler)(unsigned int, struct pt regs *)); aka rtl request irq(x, y)

– extern int rtl free global irq(unsigned int irq); aka

– rtl free irq(x)

– int rtl request local vec(int v, unsigned int (*handler)(struct pt regs
*r), unsigned int cpu);

– int rtl free local vec(int v, unsigned int cpu);

If local/global is not specified, we assume global. Vectors and irq numbers are just identi-
fiers and can overlap but still refer to different events. For example, vector 0 and irq 0 are
different events.

• Hardware enable and disable on a per interrupt basis.

– int rtl hard enable local vec(int v);

– int rtl hard disable local vec(int v);

5

– int rtl hard enable global irq(int i); aka int rtl hard enable irq(int i);

– int rtl hard disable global irq(int i); aka int rtl hard disable irq(int i);

In addition, RTLinux provides a set of primitive synchronization methods to disable and
enable interrupts and to use spinlocks in a multiprocessor environment. Semaphores are not
primitive in RTLinux for several reasons. One of the reasons is that there is a perfectly usable
package originally written by Jerry Epplin that provides semaphores. A second reason is that
semaphores are not essential for many realtime applications and the RTLinux design philosophy
is that applications should not pay a price for features that they do not use. Finally, there are some
intrinsic difficulties with the use of semaphores guarded critical regions that make semaphores a
less than optimal design choice in many situations. RTLinux will add alternative mechanisms in
future releases.

#include <rtl_sync.h>

The primitives are:

• rtl allow interrupts() Allows hardware interrupts on the current processor.

• rtl stop interrupts() Forbids hardware interrupts on the current processor.

• rtl no interrupts(x) Forbids hardware interrupts and saves the current interrupt state
on the current processor.

• rtl save interrupts(x) Saves the hardware interrupt state on the current processor.

• rtl restore interrupts(x) Restores the hardware interrupt state on the current proces-
sor.

• rtl spin lock(x) and rtl spin unlock(x) operate on pointers to spinlock t.

• rtl spin lock irqsave(x, flags) Saves state in flags, disables interupts on the current
processor, and sets a spinlock in x which must be a pointer to a spinlock t .

• rtl spin unlock irqrestore(x, flags) Does the obvious: making sure to clear the lock
first!

• rtl critical(f) For this to work, the file must contain a spinlock t my spinlock; and
#define RTL SPINLOCK my spinlock. Then rtl critical(f)) resolves to
rtl spin irqsave(&my spinlock,f)

• rtl end critical(f)

3.1 Timer

The timer module exports a ”clock structure” as a low level interface for schedulers and other
below pthreads modules. The timer also defines operations on these clocks in nanoseconds.

• struct rtl clock *rtl getbestclock (unsigned int cpu); This finds the ”best” system
clock for scheduling RT tasks on this CPU and returns a token allowing operations on the
clock.

• int rtl setclockhandler (clockid t, clock irq handler t);

• int rtl unsetclockhandler (clockid t);

6

• typedef void (*clock irq handler t)(struct pt regs *r);

The rtl time.h file also defines some arithmetic operations on timespec structures.
timespec gt(t1, t2)
timespec ge(t1, t2)
timespec le(t1, t2)
timespec eq(t1, t2)
timespec add(t1, t2)
long long timespec to ns (struct timespec *ts)
timespec sub(t1, t2)
timespec nz(t)
timespec lt(t1, t2)
struct timespec timespec from ns (long long t)

Most operations are via the rtl clock structure itself. This structure is described here to
make the explanation concrete, but there is no guarantee that the time structure will remain un-
changed.

struct rtl clock {
int (*init) (struct rtl clock *);
void (*uninit) (struct rtl clock *);
hrtime t (*gethrtime)(struct rtl clock *);
int (*sethrtime)(struct rtl clock *, hrtime t t);
int (*settimer)(struct rtl clock *, hrtime t interval);
int (*settimermode)(struct rtl clock *, int mode);
clock irq handler t handler;
int mode;
hrtime t resolution;
hrtime t value; /* only makes sense for periodic clocks */
struct rtl clock arch arch;

};
typedef struct rtl clock * clockid t;
enum { RTL CLOCK MODE UNINITIALIZED = 1, RTL CLOCK MODE ONESHOT,
RTL CLOCK MODE PERIODIC};

4 Scheduler and pthreads

rtl/schedulers/rtl_sched.c
rtl/include/rtl_sched.h

The RTLinux schedulers define realtime tasks and provide basic operations on those tasks.
In what follows we will write about “the RTLinux scheduler” for brevity, but please keep in mind
that RTLinux does not mandate the use of any particular scheduler. It is quite simple to replace
the default scheduler modules with an alternative. The API for Version 1 RTLinux is given in the
appendix. Version2 provides POSIX Pthread and some non-POSIX pthread operations The non-
POSIX calls have names function name np where the np means — non-POSIX or non-portable.

In RTLinux, there are 3 important execution modes: user (u), kernel (k), and rt (r) in
RTLinux User and kernel modes are the standard Linux user/kernel modes and when the Linux
task is running, the processor must be in one of those modes. When a RT task or interrupt handler
is running, the processor is in RT mode. In an SMP system, processors change modes indepen-
dently. Most of the calls in the RTL API are ”RT safe” and may be called while in RT mode, but
certain calls must only be run in Linux mode. These are generally calls that can introduce un-
bounded delays and/or need Linux kernel resources.

7

• int pthread create (pthread t *p, pthread attr t *a, void *(*f)(void *), void
*x)
Create a thread that will run code f passing it argument x. The thread starts execution im-
mediately. Only works in kernel mode.

• void pthread exit(void *retval); Exit. Only works in RT mode.

• int pthread delete np (pthread t thread); Stops the thread and deallocates this
thread’s resources.

• int pthread setfp np (pthread t thread, int allow fp flag); Allows or disallows this
thread to use floating point.

• – int pthread wakeup np (pthread t thread); Kernel or RT mode.

– int pthread suspend np (pthread t thread); RT mode only. Suspends the thread
until it is woken up by a wakeup call.

– int pthread wait np(void); RT mode only. Suspends this thread until its next period.

POSIX does not provide a clean mechanism for suspending and waking up threads. Instead
POSIX wants to programmers to use the signal mechanisms or the conditional variables.
Both signals and condition variables/mutexes are rather complex and we do not want to
make using them a requirement for RTLinux. So these analogs of the Version1 RTLinux API
are primitives in RTLinux V2. These calls can be implemented on top of signals if you want
to run in user mode.

• int pthread make periodic np(pthread t p, hrtime t start time, hrtime t
period); POSIX does not provide a simple method for adjusting periods. Instead, POSIX
allows threads to create timers and use the timers to schedule a task periodically. The Ver-
sion2 RTLinux scheduler controls the timers and currently does not permit threads to create
or otherwise manipulate timers.

• – int sched get priority max(int policy);

– int sched get priority min(int policy); Obvious. The default scheduler is pure
priority driven.

• As noted above, default scheduler is pure priority driven and the set call is ignored. The
POSIX RR or FIFO scheduling policies are compatibility components. In fact, it makes little
sense to design a hard realtime system using either of these scheduling policies and the
POSIX specification semantics is so loose as to make their utility unclear. We will happily
add schedulers that implement these policies, but they seem less useful than the current
pure priority/time driven scheduler or simpler policies we plan to provide later.

– int pthread setschedparam(pthread t thread, int policy,const struct
sched param *param)

– int pthread getschedparam(pthread t thread, int *policy,const struct
sched param *param)

The priorities are in the param structures and this is standard POSIX.

• Attributes. Attributes are optional calls as the scheduler will use default values if no attribute
is provided to pthread create. All calls to set attribute values are only valid in kernel mode.

– int pthread attr init(pthread attr t *attr)

8

– int pthread attr getstacksize(pthread attr t *attr, size t * stacksize)

– int pthread attr setstacksize(pthread attr t *attr, size t stacksize)

– int pthread attr getcpu np(pthread attr t *attr, int * cpu)

– int pthread attr setcpu np(pthread attr t *attr, int cpu) These last two are
non-POSIX extensions to support SMP. If you do not set this specifically, the task is
created, by default, on the current processor.

• Clock operations. Threads have no clocks. Clocks belong to schedulers. We can add
scheduling policies in which a scheduler juggles multiple clocks, but there is no obvous
advantage that in allowing a thread to specify its hardware clock On the other hand, POSIX
”clocks” are not necessarily hardware clocks.

– extern int clock gettime(clockid t clock, struct timespec *tsptr);

– extern int clock settime(clockid t clock, struct timespec *tsptr);

– extern int clock getres(clockid t clock, struct timespec *tsptr);

– extern hrtime t gethrtime(void);

– int rtl setclockmode (clockid t clock, int mode, hrtime t period);

Here are some basic POSIX calls that have not been implemented yet.

• void pthread yield(void)

• int timer create(clockid t clockid, void /*struct sigevent*/ *evp, timer t
*timerid);

• int timer delete(timer t timerid);

• int timer settime(timer t timerid, int flags, const struct itimerspec *value,
struct itimerspec *ovalue);

• int timer gettime(timer t timerid, struct itimerspec *value);

• int timer getoverrun(timer t timerid);

Type: pthread t is a pthread identifier. The current implementation defines pthread t as
a pointer to a thread structure, but this may change later. pthread t is intended to be opaque to
RTLinux application programmers.

5 Posixio and drivers

The rtl posixio module provides a file system like interface to drivers. The basic operations for
drivers are to register and unregister devices. The calls here are variations on the standard Linux
calls, but they also provide a string identifier — the file system is essentially part of the device
table.

• extern int rtl register chrdev(unsigned int, const char *, struct
rtl file operations *);

• extern int rtl unregister chrdev(unsigned int major, const char * name);

9

Rtl posixio also provides open close, read, write, ioctl and
tt mmap calls. As mentioned above, open will only open files named /dev/filenameNN where
filename is the name provided to the register call by the driver and NN is an optional device minor
number.

Perhaps the simplest example of a posixio driver is the physical memory device driver,
/dev/mem. This driver allows real-time threads to access physical computer memory in the same
way as Linux processes can do. A real-time process opens /dev/mem, and then performs an
mmap(2) call on it. After that, the physical memory area at the requested offset can be accessed by
using the address returned by mmap.

The implementation of this driver is currently trivial, because all physical memory is
mapped to the kernel address space at a constant offset, and real-time threads are also executed
in the kernel address space. However, using /dev/mem is preferable for two reasons. First, doing
so will allow debugging real-time threads as Linux threads first. Second, future implementations
of real-time Linux may provide optional memory protection for real-time tasks.

6 The fifo driver

The RTLinux fifo driver is a good illustration of the use of the POSIX I/O features and is impor-
tant on its own. The fifo driver fields requests from both Linux processes and from RT tasks and
handlers. The interface for Linux processes is the standard device interface of open,close, read
and write. In fact, on startup the fifo driver (running in Linux kernel mode) asks Linux to register
a character device with the standard table of operations so that Linux processes can treat fifos as
ordinary character devices.

/* this table is a standard Linux table for
character device operations
with RTL fifo operations in the correct slots

*/
static struct file_operations rtf_fops =
{

rtf_llseek,
rtf_read,
rtf_write,
NULL,
rtf_poll,
NULL,
NULL,
rtf_open,
NULL,
rtf_release,
NULL,
NULL,
NULL,
NULL,
NULL

};

The fifo driver also needs to provide an API to RT code. This API is configurable. If the
configuration variable CONFIG RTL POSIX IO is set, the fifo driver will register a RTLinux device
with the Posixio module and then offer read/write/open to RT components. Read and Write are
non-blocking.

10

If CONFIG RTL POSIX IO is not set, the fifo module will export primitive access routines.

int rtf_create(unsigned int minor, int size)
int rtf_destroy(unsigned int minor)
int rtf_put(unsigned int minor, void *buf, int count)
int rtf_get(unsigned int minor, void *buf, int count)

Each fifo can have a handler installed via the calls:

int rtf_create_handler(unsigned int minor, int (*handler) (unsigned int fifo))

This handler is executed in the Linux kernel context whenever a Linux process reads or writes the
FIFO.

7 A serial port driver: rt com

Another illustration of the posixio capabilities is the rt com driver. This is a PC serial port driver,
originally written by Jens Michaelsen and Jochen Küpper. It has been modified to provide POSIX
IO interface for real-time threads.

For example, to access the first serial port, a real-time thread opens /dev/ttyS0, and pro-
ceeds to use read(2) and write(2) operations on the device. The support is planned for POSIX
termios family of functions which will allow changing baud rates, byte sizes, and other commu-
nication parameters in a standard way.

8 A shared memory driver: mbuff

This driver, written by Tomasz Motylewski 2, provides means to share memory between kernel
and user address spaces. It is ideally suited for providing shared memory between RT compo-
nents and Linux processes.

The mbuff driver supports the same set of operations for both kernel components and
Linux processes:

#include <mbuff.h>

void * mbuff_alloc(const char *name, int size);
void mbuff_free(const char *name, void * mbuf);

The first time mbuff alloc is called with the given name, a shared memory block of the
specified size is allocated. The reference count for this block is set to 1. On success, the pointer to
the newly allocated block is returned. NULL is returned on failure. If the block with the specified
name already exists, this function returns the pointer that can be used to access this block and
increases the reference count.

mbuff free deassociates mbuf from the specified buffer. The reference count is decreased
by 1. When it reaches 0, the buffer is deallocated.

2motyl@stan.chemie.unibas.ch

11

A Version 1 RTLinux Scheduler API

Version1 RTLinux provided the following operations in the default scheduler.

• rt_get_time returns the time in “ticks”.

• rt_task_delete destroys a task and frees its resources.

• rtl_task_init sets up, but does not schedule a task.

• rt_task_make_periodic asks the periodic scheduler to the run task at a fixed period (given
as a parameter).

• rt_task_suspend takes the task off the run queue.

• rt_task_wait yields the processor until the next time slice for this task.

• rt_task_wakeup wakes up a suspended task.

• rt_use_fp allows the task to use floating point operations.

• rtl_set_periodic_mode optimizes the system for running a collection of tasks that share a
common fundamental period.

• rtl_set_oneshot_mode optimizes the system for cases where periodic mode is not appro-
priate.

B Sysconf

long int sysconf(int name); ”Conforming applications must act as if CHILD MAX == 0” –
which it will be in RTL. (I have no idea what most of these are. VY).

12

RG MAX SC ARG MAX
BC BASE MAX SC BC BASE MAX
BC DIM MAX SC BC DIM MAX
BC SCALE MAX SC BC SCALE MAX
BC STRING MAX SC BC STRING MAX
CHILD MAX SC CHILD MAX
CLK TCK SC CLK TCK
COLL WEIGHTS MAX SC COLL WEIGHTS MAX
EXPR NEST MAX SC EXPR NEST MAX
LINE MAX SC LINE MAX
NGROUPS MAX SC NGROUPS MAX
OPEN MAX SC OPEN MAX
PASS MAX SC PASS MAX (LEGACY)
POSIX2 C BIND SC 2 C BIND
POSIX2 C DEV SC 2 C DEV
POSIX2 C VERSION SC 2 C VERSION
POSIX2 CHAR TERM SC 2 CHAR TERM

SIX2 FORT DEV SC 2 FORT DEV
POSIX2 FORT RUN SC 2 FORT RUN
POSIX2 LOCALEDEF SC 2 LOCALEDEF
POSIX2 SW DEV SC 2 SW DEV
POSIX2 UPE SC 2 UPE
POSIX2 VERSION SC 2 VERSION
POSIX JOB CONTROL SC JOB CONTROL
POSIX SAVED IDS SC SAVED IDS
POSIX VERSION SC VERSION

RE DUP MAX SC RE DUP MAX
STREAM MAX SC STREAM MAX
TZNAME MAX SC TZNAME MAX
XOPEN CRYPT SC XOPEN CRYPT
XOPEN ENH I18N SC XOPEN ENH I18N
XOPEN SHM SC XOPEN SHM
XOPEN VERSION SC XOPEN VERSION
XOPEN XCU VERSION SC XOPEN XCU VERSION
XOPEN REALTIME SC XOPEN REALTIME
XOPEN REALTIME THREADS SC XOPEN REALTIME THREADS
XOPEN LEGACY SC XOPEN LEGACY

ATEXIT MAX SC ATEXIT MAX
IOV MAX SC IOV MAX
PAGESIZE SC PAGESIZE
PAGE SIZE SC PAGE SIZE
XOPEN UNIX SC XOPEN UNIX
XBS5 ILP32 OFF32 SC XBS5 ILP32 OFF32
XBS5 ILP32 OFFBIG SC XBS5 ILP32 OFFBIG
XBS5 LP64 OFF64 SC XBS5 LP64 OFF64
XBS5 LPBIG OFFBIG SC XBS5 LPBIG OFFBIG

AIO LISTIO MAX SC AIO LISTIO MAX
AIO MAX SC AIO MAX
AIO PRIO DELTA MAX SC AIO PRIO DELTA MAX
DELAYTIMER MAX SC DELAYTIMER MAX
MQ OPEN MAX SC MQ OPEN MAX
MQ PRIO MAX SC MQ PRIO MAX
RTSIG MAX SC RTSIG MAX
SEM NSEMS MAX SC SEM NSEMS MAX
SEM VALUE MAX SC SEM VALUE MAX
SIGQUEUE MAX SC SIGQUEUE MAX
TIMER MAX SC TIMER MAX
POSIX ASYNCHRONOUS IO SC ASYNCHRONOUS IO
POSIX FSYNC SC FSYNC
POSIX MAPPED FILES SC MAPPED FILES
POSIX MEMLOCK SC MEMLOCK
POSIX MEMLOCK RANGE SC MEMLOCK RANGE
POSIX MEMORY PROTECTION SC MEMORY PROTECTION
POSIX MESSAGE PASSING SC MESSAGE PASSING
POSIX PRIORITIZED IO SC PRIORITIZED IO
POSIX PRIORITY SCHEDULING SC PRIORITY SCHEDULING
POSIX REALTIME SIGNALS SC REALTIME SIGNALS
POSIX SEMAPHORES SC SEMAPHORES
POSIX SHARED MEMORY OBJECTS SC SHARED MEMORY OBJECTS
POSIX SYNCHRONIZED IO SC SYNCHRONIZED IO
POSIX TIMERS SC TIMERS

Maximum size of and data buffers SC GETGR R SIZE MAX
Maximum size of and data buffers SC GETPW R SIZE MAX
LOGIN NAME MAX SC LOGIN NAME MAX
PTHREAD DESTRUCTOR ITERATIONS SC THREAD DESTRUCTOR ITERATIONS
PTHREAD KEYS MAX SC THREAD KEYS MAX
PTHREAD STACK MIN SC THREAD STACK MIN
PTHREAD THREADS MAX SC THREAD THREADS MAX
TTY NAME MAX SC TTY NAME MAX
POSIX THREADS SC THREADS
POSIX THREAD ATTR STACKADDR SC THREAD ATTR STACKADDR
POSIX THREAD ATTR STACKSIZE SC THREAD ATTR STACKSIZE
POSIX THREAD PRIORITY SCHEDULING SC THREAD PRIORITY SCHEDULING
POSIX THREAD PRIO INHERIT SC THREAD PRIO INHERIT
POSIX THREAD PRIO PROTECT SC THREAD PRIO PROTECT
POSIX THREAD PROCESS SHARED SC THREAD PROCESS SHARED
POSIX THREAD SAFE FUNCTIONS SC THREAD SAFE FUNCTIONS

13

C Random comments on the POSIX Rationale

C.1 6.3.1.2 Process Environment

Posix requires ”sysconf” and ”uname” but we don’t offer these yet. See appendix B for a descrip-
tion of the many many sysconf parameters. Perhaps uname can simply read the Linux data. It
seems harmless.

C.2 6.3.1.4 Input and output

”The functions read, write, and close are required to do basic i/O and device cleanup.”
See above.

C.3 6.3.1.5 Device and class specific functions

”POSIX.1 Device of Class-Specific functions are not required.”

C.4 6.3.1.6 Language specific

C must be supported. We do this!

C.5 6.3.1.7 System databases

”Implementations are not required to support more than one user and group id ... No POSIX.1
system database functions are required.”

14

