The RTLinux Manifesto*

Victor Yodaiken

Department of Computer Science
New Mexico Institute of Technology
Socorro NM 87801

yodaiken@cs.nmt.edu
http://www.rtlinux.org

ABSTRACT

RTLinux is the Aard realtime variant of Linux
that makes it possible to control robots, da-
ta acquisition systems, manufacturing plants,
and other time-sensitive instruments and ma-
chines. This paper describes RTLinux as of
Version 1.

1 Introduction

Real-Time Linux (RTLinux) is a version of
Linux that provides hard real time capability.
A NASA computer running RTLinux flew in-
to the eye of Hurricane Georges to collect
data[14]; the Jim Henson Creature Shop in
Hollywood is developing a RTLinux applica-
tion to control “animatronic” things used in
movies; RTLinux has been used for video ed-
itors, PBXs, robot controllers, machine tools,
and even to stop and start hearts in medical
experiments’

RTLinux provides the capability of running
special realtime tasks and interrupt handler-
s on the same machine as standard Linux.
These tasks and handlers execute when they

!'RTLinux is released, as is, with no warranty of
any kind. Use at your own risk.

need to execute no matter what Linux is do-
ing. The worst case time between the mo-
ment a hardware interrupt is detected by the
processor and the moment an interrupt han-
dler starts to execute is under 15 microsec-
onds on RTLinux running on a generic x86.
A RTLinux periodic task runs within 35 mi-
croseconds of its scheduled time on the same
hardware. These times are hardware limit-
ed, and as hardware improves RTLinux will
also improve. Standard Linux takes up to
600 microseconds to start a handler and can
easily be more than 20 milliseconds (20,000
microseconds) late for a periodic task?. As
an unfair but fun comparison, an optimistic
study of MS-Windows/NT didn’t even both-
er to try to measure times under a millisec-
ond and still found that NT numbers were
essentially the same as the standard Linux
numbers, while Windows/98 was up to 140
milliseconds too late on a periodic task [7].
To be fair, there are now Window-NT ver-
sions of the RTLinux method and these seem
to get low level timings that are sometimes
almost as good and generally not more than
two times worse than RTLinux[6].

What makes RTLinux useful is that it ex-
tends the standard UNIX programming envi-

2A process using sched_set sched

ronment to realtime problems. RTLinux real-
time interrupt handlers and tasks can be con-
nected to ordinary Linux processes — either
via a device interface where Linux processes
read /write data, or via shared memory. A
standard Linux process, perhaps executing a
shell script or a Perl program, can collect data
from a realtime handler or task, process and
log it and display the results on X-Windows.
Using Perl scripts to to control a realtime de-
vice from an ordinary PC may seem ridicu-
lous, but it works surprisingly well.

The rest of this paper is in five parts. Sec-
tion 2 is an introduction to realtime com-
puting. Section 3 is an explanation of why
realtime computing is so hard to integrate
with non-realtime computing and why obvi-
ous methods — like making the standard k-
ernel directly support realtime — are doomed
to failure. Section 4 explains how RTLinux
works and section 5 shows how to write ap-
plications. The last section covers future di-
rections and has some random acknowledge-
ments.

2 An introduction to realtime
programming,.

“Realtime” is is an over-used term that can
be used to mean “right away” or “fast” as
in “realtime stock quotes”. RTLinux is ad-
dressed at hard realtime systems: those with
timing deadlines that cannot be missed. The
traditional uses for these systems are to con-
trol or monitor some physical system or de-
vice such as a motor, an assembly line, a tele-
scope, or an instrument. Telecommunications
and networking devices often also need real-
time control. Consider the difference between
the response time needed for text editor, a
video display, and a program controlling the

shutdown sequence of a liquid fuel rocket.

e The text editor should respond quickly
to user commands, but if it takes a half
a second to update a display every now
and then, few users will notice.

e Video displays should afmost always keep
up with the frame rate. A half a sec-
ond freeze will be noticed and a couple
of freezes in a minute will make the sys-
tem unpleasant. If the program starts
dropping frames, it can sometimes use
an algorithm to hide the missing frames
by interpolation.

e The rocket shutdown sequence must
meet deadlines or the rocket may ex-
plode. A single freeze of a half a sec-
ond at the wrong moment might have a
spectacular and terminal result.

So the text editor needs to be fast and re-
sponsive, the video display needs to usually
meet timing deadlines and the rocket control
needs to be able to guarantee response times.
In the CS literature, the video display would
be called a soft realtime system, and the rock-
et control would be called a fard realtime system
[13, 12].

Most hard realtime applications have fail-
ure modes that are not as spectacular as those
of liquid fuel rockets, but they need guaran-
teed timing nonetheless. If you are control-
ling a servo motor through the parallel port
of a cheap PCJ8], each timing jitter of 10 mi-
croseconds causes an error of one degree. If
you are collecting data from a scientific in-
strument or video frame grabber, a missed
deadline may result in missed data or even a
confused device. For high speed networks, a
delay of a couple of microseconds may drop a
packet and cause a major performance loss as

the system times out and requests a retrans-
mit. The distinctive property of hard real
time systems is this requirement for guaran-
teed timing — an average time response of 5
milliseconds on our rocket controller will not
make up for a single worst case of 100 mil-
liseconds.

Hard realtime systems cannot use average
case performance to compensate for worst
case performance.

Suppose that we have a board that sam-
ples analog lines and produces an 8 bit re-
sult every 100 microseconds. Most boards
like this are designed with hardware buffers
right now so that they can compensate for the
non-realtime behavior of Microsoft Windows
and NT. The analog to digital device gen-
erates samples and puts them in the buffer.
If the buffer is deep enough, say with room
for 512 samples, then we won’t lose any data
if we read the buffer at least once every 50
milliseconds. There are three problems with
this scenario. The first problem is that even
though 50 milliseconds is a long time, it is
easy to miss the deadline in even a moder-
ately loaded system. Ordinary Linux can’t
keep up, even using the so-called “realtime”
POSIX extensions. A second problem is that
if the hardware has to cope with software tim-
ing uncertainties, the hardware becomes more
complex and costly. Finally, if we need to
control a device — to react to data “in real
time” — then 50 milliseconds may be too long
and the hardware buffers may cause insta-
bility as they introduce delays in the control
loop.

RTLinux provides support for hard real-
time programs and will, in the future, offer
support for some kinds of quality of soft real-
time. RTLinux leaves the problem of “fast”

applications to standard Linux. Making non-
realtime applications run fast is incredibly
complex. It turns out that much of what y-
ou can do to speed up the non-realtime per-
formance of applications introduces unpre-
dictable delays that are unhealthy for real-
time. The obvious example is paging of vir-
tual memory. If 99.99% of program memory
references are in the page cache, and if a hit
takes one time unit and a miss takes 500 time
units, then over a sufficiently large time peri-
od the average access time is 1.05 time units
— virtual memory is practically free. On aver-
age, virtual memory is a major performance
win, because processes will be able to run as
if there was a much larger amount of mem-
ory available — with close to zero cost. On
the other hand, a realtime task that misses
its first 10 pages will take 5000 time units to
do what could otherwise be done in 10 time
units and this worst case performance is what
matters.

Because of these problems, back in the far
past® realtime systems were hand made, sim-
ple contraptions designed by tough, rugged,
engineering types who scorned compilers and
virtual memory and thought that alphanu-
meric displays were unnecessary luxuries. In
these systems, optimizing worst case perfor-
mance was quite straightforward. In fact,
many realtime systems still are designed as
loops that execute on a bare machine. The
program loops through a list of simple tasks
and the longest time before a task will run
is the sum of the execution times of all the
tasks on the list.

count er =500;
while(1){
i f(data_on_sensor()){
read_sensor();

3Well before Dave Miller was born.

comput e_out put () ;
counter--;
}
i f(!counter){
out put () ;
count er =500;

}

The problem with this design is that is does
not scale. As realtime applications get more
complex, they need more complex support. If
you want to have a realtime control program
for an aircraft engine diagnostic system that
monitors hundreds of sensors and also need-
s to display graphical data, interact with a
database, connect to a network and even run
a web interface, then writing a control loop
system is out of the question. The problem
then becomes one of keeping the fast, pre-
dictable operation that you can get from con-
trol loop on a bare machine, while running in
a much more sophisticated software environ-
ment. One solution is to add realtime sup-
port to a non-realtime kernel, but that’s not
as simple as it may sound.

3 You can put racing stripes on
a bulldozer, but it won’t go
any faster.

Before describing how RTLinux works, it is
worthwhile to explain why what seems like
a more straightforward approach does not
work. You could just take an operating sys-
tem like Linux and stick realtime support into
the kernel. For example, you could allow for
“realtime” processes with locked memory (so
there were no delays while virtual memory
was swapped in) and a special scheduler to

always run these processes first and in a pre-
dictable order. This approach is exemplified
in the part of the POSIX 1003.13[10] stan-
dard called “Multi-Purpose Realtime System
Profile” (PSE54). RTLinux does not try to
meet this standard, but standard Linux does
support PSE54 compliant m ock (memory
lock) and sched_set sched (special sched-
ule) system calls and POSIX RT signals.

To see how well the POSIX PSEb54 ap-
proach works under standard Linux, we can
write a simple program that asks to be spe-
cially scheduled and then calls udel ay to
suspend itself for, say, 50 milliseconds. On
a Pentium, it is possible to read the proces-
sor cycle counter before and after this delay
to get reasonably precise timing. We can set
up a loop and look for average and worst case
delay. On an idle standard Linux system, the
task is remarkably precise: the time for 1000
trips through the loop is rock solid and the
worst case deviation from average is about
100 microseconds in my test on a 333MHz du-
al PII system. But when I/O activity begins,
the worst case deviation rapidly rises to a half
a millisecond and if one starts up Netscape,
the worst case deviation exceeds a couple of
milliseconds. A simple test program that
does wri te(1, buff, Bl GNUMBER) causes
the “realtime” task to experience delays of
over 18 milliseconds — even though the aver-
age remains unchanged. Ordinary standard
Linux processes, of course, do a lot worse.
So we could not reliably use the data ac-
quisition card discussed above if all we had
to work with were standard Linux process-
es and POSIX PSE54. For comparison, the
same test on RTLinux gives worst case differ-
ence between minimum and maximum (not
between max and average) of under 25 mi-
croseconds — almost 1000 times better. Run-
ning the RTLinux task at 500 microsecond

intervals gives identical precision, and Lin-
ux continues to run quite well. Running the
POSIX “realtime” process at 500 microsec-
ond intervals stops Linux completely.

No other general purpose OS does any bet-
ter than standard Linux in mixing RT with
standard services — all for the same reasons.
The most obvious problem is that the most
useful design rule for general purpose operat-
ing systems is: optimize the common case. Thus,
Linux SMP locks are exceptionally fast when
there is no contention — the common case —
and pay a significant price when there is con-
tention. To use another design would slow
down general operation of the system in or-
der to optimize something that should hap-
pen only rarely. Similarly, standard Linux
interrupt handling is really fast for a gen-
eral purpose operating system. In some of
our measurements, standard Linux averages 2
microseconds to get to the interrupt handler
on reasonably standard x86 PCs. That’s im-
pressive and it is critical for making users of
graphical user interfaces and interactive net-
works feel happy. Worst case behavior is not
so impressive and some interrupts are delayed
by hundreds of microseconds. The problem is
that it is not so easy to figure out how to de-
crease worst case without increasing average
case.

If you look at Linux code long enough, y-
ou will see many more fundamental contra-
dictions with realtime requirements. A few
examples should make the case.

e “Coarse grained” synchronization mean-
s that there are long intervals when one
task has exclusive use of some data. This
will delay the execution of a realtime
task that needs the same data struc-
tures. “Fine grained” synchronization,
on the other hand, will cause the system
to spend a lot of time uselessly locking

and unlocking data structures, slowing
down all system tasks. Linux uses coarse
grained scheduling around some of its
core data structures because it would be
stupid to slow down the whole system to
reduce worst case.

Linux will sometimes give even the most
unimportant and nicest task a time-slice,
even when a more important task is
runnable. It would not be smart to nev-
er run a background process that cleans
up log files, even if a higher priority com-
putation is willing to use up all available
processor time. But in a realtime sys-
tem, the highest priority task should not
wait for a lower priority task. In a real-
time system, you cannot assume that low
priority tasks will ever make progress —
but in a general purpose operating sys-
tem we do assume that low priority tasks
will progress.

Linux will reorder requests from tasks to
make more efficient use of the hardware.
For example, disk block reads from the
lowest priority processes may take prece-
dence over read requests from the highest
priority process so to minimize disk head
movement or to improve chances of error
recovery.

Linux will “batch” operations to make
more efficient use of the hardware. For
example, instead of freeing one page at
a time when memory gets tight, Linux
will run through the list of pages clear-
ing out as many as possible — delaying
execution of all processes. It would be
counter-productive for Linux to run the
swapper each time a page was needed,
but the worst case certainly gets a lot
worse.

e Linux will not preempt the execution of
even the lowest priority tasks during sys-
tem calls. While the RC5 process is in
the middle of “fork”, a message that ar-
rives for the video display process will sit
on the queue. To get around this prob-
lem, Linux would have to put in preemp-
tion points that would slow down all sys-
tem calls.

e Linux will make high priority tasks wait
for low priority tasks to release resources.
If the RC5 program allocates the last
network buffer and the robot arm con-
troller needs to send a message to stop
the robot arm, the robot arm controller
will just have to wait until some other
process frees a network buffer.

You could argue that since there are oper-
ating systems mixing realtime and standard
services in the same kernel, the above must
be wrong. Those systems work, and are sub-
stantial technical achievements, but they are
complicated and quite slow. You can have
deterministic worst case behavior time on So-
laris RT, but the worst case is really worse
than you might be willing to tolerate. In the
academic realtime literature, it is often stat-
ed that realtime does not require speed, it
requires determinism (fixed worst case tim-
ings). That’s true as far as it goes, but you
can’t do realtime video editing if your worst
case behavior only allows for a frame rate of
one frame every 2 seconds.

Since realtime and general purpose operat-
ing systems have contradictory design goals,
it is not surprising that what is smart in one
system is deadly in another. If we attempt to
satisfy both design goals in the same system,
we end up with something that does neither
very well.

4 The RTLinux solution

About 20 years ago, researchers at Bell Labs
built an experimental operating system called
MERTI[9]. This operating system was in-
tended to run both realtime and general pur-
pose applications. But instead of trying to
make one operating system that could sup-
port both, MERTSs designers tried to make a
system in which a realtime operating system
and a general purpose (time-sharing) operat-
ing system worked together. The designers
wrote:

. the availability of a sophisticated time-
sharing system in the same machine as the
realtime operating system provides power-
ful tools which can be exploited in designing
the man-machine interface to the real-time
processes.

That is, MERT’s designers claimed that
by decoupling the realtime OS from the non-
realtime OS, they were able to allow appli-
cation developers to use the services of the
non-realtime OS *

RTLinux works by treating the Linux OS
kernel as a task executing under a small re-
altime operating system. In fact, Linux is
the idle task for the realtime operating sys-
tem, executing only when there are no real-
time tasks to run. The Linux task can nev-
er block interrupts or prevent itself from be-
ing preempted. The technical key to all this
is a software emulation of interrupt control
hardware. When Linux tells the hardware to

4The MERT paper appeared in a famous 1978 is-
sue of the Bell Systems Technical Journal. This issue
also carried articles reporting on porting C code to
multiple machines (a novel idea at the time), a new
text processing system called troff, the programmers
workbench, and the original papers on UNIX and C.
You should read it or reread it.

disable interrupts, the realtime system inter-
cepts the request, records it, and returns to
Linux. Linux is not ever allowed to really
disable hardware interrupts. No matter what
state Linux is in, it cannot add latency to
the realtime system interrupt response time.
When an interrupt arrives, the RTLinux ker-
nel intercepts the interrupt and and decides
what to do. If there is a realtime handler for
the interrupt, the handler is invoked. If there
is no realtime handler, or if the handler in-
dicates that it wants to share the interrupt
with Linux, the interrupt is marked pending.
If Linux has asked that interrupts be enabled
any pending interrupts are emulated and the
Linux handlers are invoked — with hardware
interrupts re-enabled.

No matter what Linux does, whether Linux
is running in kernel mode or running a user
process, whether Linux is disabling interrupt-
s or enabling interrupts, whether Linux is in
the middle of a spin-lock or not, the realtime
system is always able to respond to the inter-
rupt.

RTILinux decouples the mechanisms of the
realtime Kernel from the mechanisms of the
general purpose Kernel so that each can be
optimized independently and so that the RT
Kernel can be Kept small and simple.

RTLinux is designed so that the RT ker-
nel never has to wait for the Linux side to
release any resources. The RT kernel does
not request memory, share spin-locks, or syn-
chronize on any data structures — except in
tightly controlled situations. For example,
the communication links used to move da-
ta between RT tasks and Linux processes are
non-blocking on the RT side: there is never a
case where the RT task waits to queue or d-
equeue data. The near failure of the Mars
Lander was caused by an interaction between

a realtime task and an operating system ser-
vice that assumed it was ok to de-schedule
a process. One VxWorks task acquired a
semaphore and a high priority task was then
put to sleep when it tried to write to a pipe
protected by that semaphore. RTLinux does
not have any such hidden points of synchro-
nization.

Of course, it doesn’t do much good to have
a realtime system that can’t communicate at
all with the non-realtime system, so RTLinux
provides both shared memory (using a crude
method right now) and also a device interface
that lets Linux processes read and write to
realtime tasks.

One of the key design principles of RTLin-
ux is that the more that is done in Linux —
and the less that needs to be done on the RT
side — the better. Linux takes care of system
and device initialization and of any blocking
dynamic resource allocation. Device initial-
ization can be left to Linux. There cannot
be any realtime constraints at boot time, so
there is no need for the RT system to be in-
volved. Blocking dynamic resource allocation
is left to Linux. Any thread of execution that
is willing to be blocked when there are no
available resources cannot have hard realtime
constraints. For example, there is no way for
a RT task to call malloc or kmalloc or any other
memory allocator. If the task does not stati-
cally allocate memory, it does not have access
to that memory. Finally, RTLinux relies on
the Linux loadable kernel module mechanism
to install components of the RT system and
to keep the RT system modular and extensi-
ble. Loading a RT module is not a realtime
operation and it can also be safely left to Lin-
ux. The job of the RT kernel is to provide di-
rect access to the raw hardware for realtime
tasks so that they can have minimal latency
and maximal processing when they need it.

Interrupt control hardware

e Real-Time Kernel ' A
Real-Time |
! - tasks
Linux
Real-Time Fifos

Y

Linux processes

Block level design of RTLinux

Figure 1: Flow of data and control

Anything else just gets in the way.

So RTLinux is a variation, a better varia-
tion in my humble opinion, of the basic idea
found in MERT. Around the same time that
we developed and released RTLinux, Greg
Bollella [4, 3] was working on putting a real-
time kernel on the same machine as the gener-
al purpose IBM MicroKernel and a little later
two companies produced systems in which a
realtime kernel shares the machine with Win-
dows NT [2, 5]. All of these systems use some
variation on the technique of putting a virtu-
al machine layer between the general purpose
OS and the interrupt hardware. The low lev-
el times measured by the Radisys authors [6]
and by Bollella are similar to the RTLinux
times: reflecting mostly the limitations of PC
motherboard design. It’s irritating to observe
an out-of-order execution, deeply pipelined,

highly cached, 400MHz processor, turn into
an expensive space heater as it negotiates a
8 bit ISA bus path to its legacy original-PC
system timer.

5 Using RTLinux

RTLinux is very much module oriented. To
use RTLinux, you load a modules that im-
plement whatever RT capabilities you need.
Two of the core modules are the scheduler
and the module that implements RT-fifos. If
the services provided by these modules don’t
meet the requirements of the application,
they can be replaced by other modules. For
example, there are two alternative scheduling
modules — a “earliest deadline first” sched-
uler implemented by Ismael Rippol[11] and a
rate-monotonic scheduler implemented by O-

leg Subbotin (see the rtlinux.org web page)®.
The basic scheduler simply runs the highest
priority ready RT task until that task sus-
pends itself or until a higher priority task be-
comes ready.

The original RTLinux scheduler (written
by Michael Barabanov) used the timer in
“one shot” mode so that it could easily han-
dle a collection of tasks with periods that
had a small common divisor. For example,
if one task must run every 331 time unit-
s and the other runs every 1027 time unit-
s, there is no good choice for a timer peri-
od. In one-shot mode, the clock would be set
first to generate an interrupt after 331 time
units and then reprogrammed after the in-
terrupt to generate a second interrupt in an-
other 691 time units (minus the time needed
to reprogram the clock). The price we pay
is that we reprogram the clock on every in-
terrupt. For x86 generic motherboards, re-
programming the clock is relatively slow. It
turns out, however, that many applications
don’t need the generality of a one-shot timer
and can avoid the expense of reprogramming.
Professor Paolo Mantegazza of the Aerospace
Engineering Department in Pofitecnico di Milano
wrote a scheduler that demonstrated the u-
tility of periodic mode and encouraged us to
put it into the standard scheduler®. The cur-
rent RTLinux scheduler offers both periodic
and “one shot” modes. On SMP systems the
problem gets simpler because there is an on-
processor high frequency timer chip that is
available to the RTL system.

5The academic CS literature is deeply concerned
with the right way to schedule RT tasks. My theory
is that nobody knows yet, and that the OS should
not make the choice.

6Professor Mantegazza is also responsible for de-
bugging floating point support in RTLinux.

5.1 The API

The standard API for Versionl (based on the
2.0 Linux kernel) is as follows.

ertl _request _irgq and
rtl _free_irq. These activate
and deactivate interrupt handlers.

ert _get time returns the time in

“ticks”.

e rt_task_del et e destroys a task and
frees its resources.

e rtl _task_init sets up, but does not
schedule a task.

e rt _task make periodic asks the
periodic scheduler to the run task at a
fixed period (given as a parameter).

e rt _task suspend takes the task off
the run queue.

ert task wait yields the processor
until the next time slice for this task.

e rt_task wakeup wakes up a suspend-
ed task.

e rt_use_f p allows the task to use float-
ing point operations.

e rtf _create creates a fifo.

e rtf_create_handl er attaches a rou-
tine that runs under the Linux kernel to
a fifo so that user processes can be made
runnable when there is data available.

e rtf _destroy frees a fifo.

e rtf_get is the non-blocking read oper-
ation for realtime tasks.

e rtf _put is the non-blocking write oper-
ation for realtime tasks.

e rtf _resize changes the size of data in
the fifo.

e rtl_set periodi c_node optimizes
the system for running a collection of
tasks that share a common fundamental
period.

e rtl _set oneshot node optimizes
the system for cases where periodic
mode is not appropriate.

In the Version2 (based on Linux 2.2) many
of these calls have an alternate form with an
additional parameter for cpu identifier. On
a SMP system, a task is associated with a
particular cpu and is only scheduled by the
scheduler on that cpu. Also, on SMP sys-
tems, some interrupts are local and need to
be given handlers per/cpu.

5.2 Examples
5.2.1 Squares

Figure 2 shows how a program to produce a
square wave on the parallel port output would
be written.

This program would be compiled as a mod-
ule, and i nsnod is used to start it. When the
module starts, it runs initialization code that
constructs a single task using rt _t ask_i ni t
and then asks the realtime scheduler to run
the task every 450 ticks of the clock. On a
SMP x86 system, we have a more sophisti-
cated timer that used the processor clock, but
on the standard motherboards we are still s-
tuck with the antique 18353 — a vestige of the
original IBM PC. In spite of this embarrass-
ment, this task is never more than about 40
microseconds late or early, on anything from
an old 386 to a 500Mhz PIII, no matter what
load is running in the system.

5.2.2 Collecting data

To make something like the analog/digital
converter discussed above work, we would
write two pieces of code. The first would be
a realtime module that would poll the device
and then put data into a realtime fifo. The
other piece of code would read the fifo and
would run as a Linux user process. The major
change from the parallel port toggling exam-
ple would be in the main loop of the function
code_for _rtl _task which might be writ-
ten something like this:

whil e(1){
read _data_from hardwar e;
rtf _put (FI FO I D, data, si ze);
/* wait till next period */
rt_task wait();

}

On the Linux side, the realtime fifos are
devices: rtfO,rtfl1 The Linux side
task could be a one line shell script:

cat /dev/rtf0O > logfile

5.2.3 Interrupt handlers

Instead of using the call-
s to the scheduler module —
rtl taskwait, rtl_task.init, and
rtl task_make_periodic - we could

simply attach our function to a timer. Using
similar task code, we could change the
initializing code as follows.

i nt
{
rtl _request irqg(CMOS CLQOCK, \
handl er _ptr);
I NI T_CMOS CLOCK(FI FTYMS) ;
return O,

}

i nit_nodul e(voi d)

/* Module to toggle output on the parallel port */
RT_TASK ny_t ask
#defi ne STACK SI ZE 3000

voi d code_for_rtl_task(unsigned int pin) {
static unsigned char bits = 0;
while(1){
if(bits)bits = 0;
else bits = (1<< pin);
/* wite on the parallel port */
outb(bits, LPT_PORT);

/* wait till next period */
rt_task wait();
}

}

int init_nodul e(void)
{
RTIME now = rt_get _tinme();
/* Initialize a task with code code_for _rtl _task
pin 3 ,stack size STACK SIZE and priority 1 */
rtl _task init(&y_task, code for rtl _task, 3, STACK SIZE, 1);
/* run every 450 8253/4 ticks

(about 50 mlliseconds)*/
rtl _task _nake periodi c(&mwtask, now, 450);
return O;

Figure 2: Square wave RT program

Our cleanup code for the module would cal-
Irtl free.irqg. The code for the handler
would look like the code for task, except in-
stead of calling rt| _t ask wai t it would re-
set the CMOS clock to allow further inter-
rupts.

6 What next and acknowledg-
ments

A 2.2 version of RTLinux was released in
January 1999 with some missing features,
but with improved support of SMP. A ful-
ly functional version will, T hope, be released
in March. Ports are underway to Alpha
and to PowerPC. SMP with larger number-
s of processors is a key goal over the nex-
t few months. We are also rewriting the
scheduler to support the minimal POSIX
RT standard (not from the PSE54 standard
mentioned earlier) and are looking at how
to support QOS (quality of service) assur-
ances for soft realtime tasks [12]. Other
developments are several commercial pack-
ages for RTLinux under development. See
http://ww. rtlinux.com for commer-
cial links. Linus Torvalds once said that the
RTLinux core would become integrated with
the standard kernel in 2.3, but the availabil-
ity of pre-patched kernels makes this a less
pressing issue. News and code can always be
found at http: //www. rtlinux. org.

At New Mexico Tech, RTLinux develop-
ment has been funded mostly by USENIX
(htt p: // www. useni x. or g). There is (G-
PL) RTLinux development now being car-
ried out on a commercial basis and this
is being financed by industrial contracts.
RTLinux was first implemented by Michael
“FZ” Barabanov|[l]. As with all open-source
projects, RTLinux is a collaborative effort.

Thanks to the Linux kernel developers for
such a useful idle task and thanks to the
RTLinux users for being so enthusiastic and
brave and for contributing code, ideas, and
interesting stories.

References

[1] Michael Barabanov and Victor Yo-
daiken. Real-time linux. Linux journal,
February 1997.

[2] Nick Vasilatos Bill Carpenter, Mark Ro-
man and Myron Zimmerman. Rtx real-
time subsystem for windows nt. In
Windows NI System Engineering Workshop.
USENIX, August 1997.

(3] Greg Bollella. Slotted Priorities: Supporting
Real-Time Computing Within General-Purpose
Operating Systems. PhD thesis, University
of North Carolina, 1997.

[4] Greg Bollella and Kevein Jeffay. Sup-
porting co-resident operating systems.
In Proceedings of the Real-Time Technology and
Applications Symposium, pages 4-14, May
1995.

[5] Radisys Corporation. Intime kernel.
Technical report, Radisys Corporation,
http://ww. radi sys. com1997.

[6] Radisys Corporation. Intime in-
terrupt latency report. Techni-
cal report, Radisys Corporation,

http: //wwv. radi sys. com1998.

[7] James P. Held Erik Cota-Robles. A
comparison on windows driver model la-
tency performancea on windows nt and
windows 98. In Proceedings of the Third
Symposium on Operating Systems Design and

8]

[9]

[10]

[11]

[12]

[13]

[14]

Implementation (OSDI199), pages 159-172,
Boston, MA, Feb 1998. USENIX.

Bernhard Kuhn. Servomotorens-
teuerung mit rt-linux. Linux Magazine
(germany), December 1998.

H. Lycklama and D. L. Bayer. The
MERT operating system. Bell System Tech-
nical Journal, 57(6):2049-2086, 1978.

The Portable Application Standard-
s Committee of the IEEE Computer So-
ciety. P1003.13 draft standard for infor-
mation technology — standardized ap-
plication environment profile — posix re-
altime application support (aep). Tech-
nical report, IEEE, 1998.

Ismael Ripoll. Earliest deadline
first scheduler. Technical report,
University — of Valencia (Spain),
http://bernia. di sca. upv. es/
1998.

John A. Stankovic. Strategic direction-
s in real-time and embedded system-
S. ACM Computing Surveys, 28(4):751-763,
Dec 1996.

John A. Stankovic and Krithi Ramam-
ritham. Hard Real-Time Systems, volume
819 of IEEE Tutorials. IEEE, 1988.

C. Wayne Wright and Edward J. Walsh.
Hurricane hunting. Linux Journal, (58),
Feb 1999.

