ActiViz .NET  5.8.0
Public Member Functions | Static Public Member Functions | Public Attributes | Static Public Attributes | Protected Member Functions | Static Private Member Functions | List of all members
Kitware.VTK.vtkMapper Class Reference

vtkMapper - abstract class specifies interface to map data to graphics primitives More...

Inheritance diagram for Kitware.VTK.vtkMapper:
[legend]
Collaboration diagram for Kitware.VTK.vtkMapper:
[legend]

Public Member Functions

 vtkMapper (IntPtr rawCppThis, bool callDisposalMethod, bool strong)
 Automatically generated constructor - called from generated code. DO NOT call directly.
void ColorByArrayComponent (int arrayNum, int component)
 Legacy: These methods used to be used to specify the array component. It is better to do this in the lookup table.
void ColorByArrayComponent (string arrayName, int component)
 Legacy: These methods used to be used to specify the array component. It is better to do this in the lookup table.
virtual void CreateDefaultLookupTable ()
 Create default lookup table. Generally used to create one when none is available with the scalar data.
int GetArrayAccessMode ()
 Get the array name or number and component to color by.
int GetArrayComponent ()
 Get the array name or number and component to color by.
int GetArrayId ()
 Get the array name or number and component to color by.
string GetArrayName ()
 Get the array name or number and component to color by.
override double[] GetBounds ()
 Return bounding box (array of six doubles) of data expressed as (xmin,xmax, ymin,ymax, zmin,zmax).
override void GetBounds (IntPtr bounds)
 Return bounding box (array of six doubles) of data expressed as (xmin,xmax, ymin,ymax, zmin,zmax).
virtual int GetColorMode ()
 Control how the scalar data is mapped to colors. By default (ColorModeToDefault), unsigned char scalars are treated as colors, and NOT mapped through the lookup table, while everything else is. Setting ColorModeToMapScalars means that all scalar data will be mapped through the lookup table. (Note that for multi-component scalars, the particular component to use for mapping can be specified using the SelectColorArray() method.)
string GetColorModeAsString ()
 Return the method of coloring scalar data.
virtual int GetForceCompileOnly ()
 Turn on/off flag to control whether data is rendered using immediate mode or note. Immediate mode rendering tends to be slower but it can handle larger datasets. The default value is immediate mode off. If you are having problems rendering a large dataset you might want to consider using immediate more rendering.
virtual int GetImmediateModeRendering ()
 Turn on/off flag to control whether data is rendered using immediate mode or note. Immediate mode rendering tends to be slower but it can handle larger datasets. The default value is immediate mode off. If you are having problems rendering a large dataset you might want to consider using immediate more rendering.
vtkDataSet GetInput ()
 This instance variable is used by vtkLODActor to determine which mapper to use. It is an estimate of the time necessary to render. Setting the render time does not modify the mapper.
vtkDataSet GetInputAsDataSet ()
 Get the input to this mapper as a vtkDataSet, instead of as a more specialized data type that the subclass may return from GetInput(). This method is provided for use in the wrapper languages, C++ programmers should use GetInput() instead.
virtual int GetInterpolateScalarsBeforeMapping ()
 By default, vertex color is used to map colors to a surface. Colors are interpolated after being mapped. This option avoids color interpolation by using a one dimensional texture map for the colors.
vtkScalarsToColors GetLookupTable ()
 Specify a lookup table for the mapper to use.
override uint GetMTime ()
 Overload standard modified time function. If lookup table is modified, then this object is modified as well.
virtual double GetRenderTime ()
 This instance variable is used by vtkLODActor to determine which mapper to use. It is an estimate of the time necessary to render. Setting the render time does not modify the mapper.
virtual int GetScalarMaterialMode ()
 Set/Get the light-model color mode.
string GetScalarMaterialModeAsString ()
 Return the light-model color mode.
virtual int GetScalarMode ()
 Control how the filter works with scalar point data and cell attribute data. By default (ScalarModeToDefault), the filter will use point data, and if no point data is available, then cell data is used. Alternatively you can explicitly set the filter to use point data (ScalarModeToUsePointData) or cell data (ScalarModeToUseCellData). You can also choose to get the scalars from an array in point field data (ScalarModeToUsePointFieldData) or cell field data (ScalarModeToUseCellFieldData). If scalars are coming from a field data array, you must call SelectColorArray before you call GetColors. When ScalarMode is set to use Field Data (ScalarModeToFieldData), you must call SelectColorArray to choose the field data array to be used to color cells. In this mode, if the poly data has triangle strips, the field data is treated as the celldata for each mini-cell formed by a triangle in the strip rather than the entire strip.
string GetScalarModeAsString ()
 Return the method for obtaining scalar data.
virtual double[] GetScalarRange ()
 Specify range in terms of scalar minimum and maximum (smin,smax). These values are used to map scalars into lookup table. Has no effect when UseLookupTableScalarRange is true.
virtual void GetScalarRange (IntPtr data)
 Specify range in terms of scalar minimum and maximum (smin,smax). These values are used to map scalars into lookup table. Has no effect when UseLookupTableScalarRange is true.
virtual int GetScalarVisibility ()
 Turn on/off flag to control whether scalar data is used to color objects.
virtual int GetStatic ()
 Turn on/off flag to control whether the mapper's data is static. Static data means that the mapper does not propagate updates down the pipeline, greatly decreasing the time it takes to update many mappers. This should only be used if the data never changes.
virtual bool GetSupportsSelection ()
 WARNING: INTERNAL METHOD - NOT INTENDED FOR GENERAL USE DO NOT USE THIS METHOD OUTSIDE OF THE RENDERING PROCESS Used by vtkHardwareSelector to determine if the prop supports hardware selection.
virtual int GetUseLookupTableScalarRange ()
 Control whether the mapper sets the lookuptable range based on its own ScalarRange, or whether it will use the LookupTable ScalarRange regardless of it's own setting. By default the Mapper is allowed to set the LookupTable range, but users who are sharing LookupTables between mappers/actors will probably wish to force the mapper to use the LookupTable unchanged.
virtual void ImmediateModeRenderingOff ()
 Turn on/off flag to control whether data is rendered using immediate mode or note. Immediate mode rendering tends to be slower but it can handle larger datasets. The default value is immediate mode off. If you are having problems rendering a large dataset you might want to consider using immediate more rendering.
virtual void ImmediateModeRenderingOn ()
 Turn on/off flag to control whether data is rendered using immediate mode or note. Immediate mode rendering tends to be slower but it can handle larger datasets. The default value is immediate mode off. If you are having problems rendering a large dataset you might want to consider using immediate more rendering.
virtual void InterpolateScalarsBeforeMappingOff ()
 By default, vertex color is used to map colors to a surface. Colors are interpolated after being mapped. This option avoids color interpolation by using a one dimensional texture map for the colors.
virtual void InterpolateScalarsBeforeMappingOn ()
 By default, vertex color is used to map colors to a surface. Colors are interpolated after being mapped. This option avoids color interpolation by using a one dimensional texture map for the colors.
override int IsA (string type)
 Undocumented Block
vtkUnsignedCharArray MapScalars (double alpha)
 Map the scalars (if there are any scalars and ScalarVisibility is on) through the lookup table, returning an unsigned char RGBA array. This is typically done as part of the rendering process. The alpha parameter allows the blending of the scalars with an additional alpha (typically which comes from a vtkActor, etc.)
new vtkMapper NewInstance ()
 Undocumented Block
override void ReleaseGraphicsResources (vtkWindow arg0)
 Release any graphics resources that are being consumed by this mapper. The parameter window could be used to determine which graphic resources to release.
virtual void Render (vtkRenderer ren, vtkActor a)
 Method initiates the mapping process. Generally sent by the actor as each frame is rendered.
virtual void ScalarVisibilityOff ()
 Turn on/off flag to control whether scalar data is used to color objects.
virtual void ScalarVisibilityOn ()
 Turn on/off flag to control whether scalar data is used to color objects.
void SelectColorArray (int arrayNum)
 When ScalarMode is set to UsePointFieldData or UseCellFieldData, you can specify which array to use for coloring using these methods. The lookup table will decide how to convert vectors to colors.
void SelectColorArray (string arrayName)
 When ScalarMode is set to UsePointFieldData or UseCellFieldData, you can specify which array to use for coloring using these methods. The lookup table will decide how to convert vectors to colors.
virtual void SetColorMode (int _arg)
 Control how the scalar data is mapped to colors. By default (ColorModeToDefault), unsigned char scalars are treated as colors, and NOT mapped through the lookup table, while everything else is. Setting ColorModeToMapScalars means that all scalar data will be mapped through the lookup table. (Note that for multi-component scalars, the particular component to use for mapping can be specified using the SelectColorArray() method.)
void SetColorModeToDefault ()
 Control how the scalar data is mapped to colors. By default (ColorModeToDefault), unsigned char scalars are treated as colors, and NOT mapped through the lookup table, while everything else is. Setting ColorModeToMapScalars means that all scalar data will be mapped through the lookup table. (Note that for multi-component scalars, the particular component to use for mapping can be specified using the SelectColorArray() method.)
void SetColorModeToMapScalars ()
 Control how the scalar data is mapped to colors. By default (ColorModeToDefault), unsigned char scalars are treated as colors, and NOT mapped through the lookup table, while everything else is. Setting ColorModeToMapScalars means that all scalar data will be mapped through the lookup table. (Note that for multi-component scalars, the particular component to use for mapping can be specified using the SelectColorArray() method.)
void SetForceCompileOnly (int value)
 Turn on/off flag to control whether data is rendered using immediate mode or note. Immediate mode rendering tends to be slower but it can handle larger datasets. The default value is immediate mode off. If you are having problems rendering a large dataset you might want to consider using immediate more rendering.
virtual void SetImmediateModeRendering (int _arg)
 Turn on/off flag to control whether data is rendered using immediate mode or note. Immediate mode rendering tends to be slower but it can handle larger datasets. The default value is immediate mode off. If you are having problems rendering a large dataset you might want to consider using immediate more rendering.
virtual void SetInterpolateScalarsBeforeMapping (int _arg)
 By default, vertex color is used to map colors to a surface. Colors are interpolated after being mapped. This option avoids color interpolation by using a one dimensional texture map for the colors.
void SetLookupTable (vtkScalarsToColors lut)
 Specify a lookup table for the mapper to use.
void SetRenderTime (double time)
 This instance variable is used by vtkLODActor to determine which mapper to use. It is an estimate of the time necessary to render. Setting the render time does not modify the mapper.
virtual void SetScalarMaterialMode (int _arg)
 Set/Get the light-model color mode.
void SetScalarMaterialModeToAmbient ()
 Set/Get the light-model color mode.
void SetScalarMaterialModeToAmbientAndDiffuse ()
 Set/Get the light-model color mode.
void SetScalarMaterialModeToDefault ()
 Set/Get the light-model color mode.
void SetScalarMaterialModeToDiffuse ()
 Set/Get the light-model color mode.
virtual void SetScalarMode (int _arg)
 Control how the filter works with scalar point data and cell attribute data. By default (ScalarModeToDefault), the filter will use point data, and if no point data is available, then cell data is used. Alternatively you can explicitly set the filter to use point data (ScalarModeToUsePointData) or cell data (ScalarModeToUseCellData). You can also choose to get the scalars from an array in point field data (ScalarModeToUsePointFieldData) or cell field data (ScalarModeToUseCellFieldData). If scalars are coming from a field data array, you must call SelectColorArray before you call GetColors. When ScalarMode is set to use Field Data (ScalarModeToFieldData), you must call SelectColorArray to choose the field data array to be used to color cells. In this mode, if the poly data has triangle strips, the field data is treated as the celldata for each mini-cell formed by a triangle in the strip rather than the entire strip.
void SetScalarModeToDefault ()
 Control how the filter works with scalar point data and cell attribute data. By default (ScalarModeToDefault), the filter will use point data, and if no point data is available, then cell data is used. Alternatively you can explicitly set the filter to use point data (ScalarModeToUsePointData) or cell data (ScalarModeToUseCellData). You can also choose to get the scalars from an array in point field data (ScalarModeToUsePointFieldData) or cell field data (ScalarModeToUseCellFieldData). If scalars are coming from a field data array, you must call SelectColorArray before you call GetColors. When ScalarMode is set to use Field Data (ScalarModeToFieldData), you must call SelectColorArray to choose the field data array to be used to color cells. In this mode, if the poly data has triangle strips, the field data is treated as the celldata for each mini-cell formed by a triangle in the strip rather than the entire strip.
void SetScalarModeToUseCellData ()
 Control how the filter works with scalar point data and cell attribute data. By default (ScalarModeToDefault), the filter will use point data, and if no point data is available, then cell data is used. Alternatively you can explicitly set the filter to use point data (ScalarModeToUsePointData) or cell data (ScalarModeToUseCellData). You can also choose to get the scalars from an array in point field data (ScalarModeToUsePointFieldData) or cell field data (ScalarModeToUseCellFieldData). If scalars are coming from a field data array, you must call SelectColorArray before you call GetColors. When ScalarMode is set to use Field Data (ScalarModeToFieldData), you must call SelectColorArray to choose the field data array to be used to color cells. In this mode, if the poly data has triangle strips, the field data is treated as the celldata for each mini-cell formed by a triangle in the strip rather than the entire strip.
void SetScalarModeToUseCellFieldData ()
 Control how the filter works with scalar point data and cell attribute data. By default (ScalarModeToDefault), the filter will use point data, and if no point data is available, then cell data is used. Alternatively you can explicitly set the filter to use point data (ScalarModeToUsePointData) or cell data (ScalarModeToUseCellData). You can also choose to get the scalars from an array in point field data (ScalarModeToUsePointFieldData) or cell field data (ScalarModeToUseCellFieldData). If scalars are coming from a field data array, you must call SelectColorArray before you call GetColors. When ScalarMode is set to use Field Data (ScalarModeToFieldData), you must call SelectColorArray to choose the field data array to be used to color cells. In this mode, if the poly data has triangle strips, the field data is treated as the celldata for each mini-cell formed by a triangle in the strip rather than the entire strip.
void SetScalarModeToUseFieldData ()
 Control how the filter works with scalar point data and cell attribute data. By default (ScalarModeToDefault), the filter will use point data, and if no point data is available, then cell data is used. Alternatively you can explicitly set the filter to use point data (ScalarModeToUsePointData) or cell data (ScalarModeToUseCellData). You can also choose to get the scalars from an array in point field data (ScalarModeToUsePointFieldData) or cell field data (ScalarModeToUseCellFieldData). If scalars are coming from a field data array, you must call SelectColorArray before you call GetColors. When ScalarMode is set to use Field Data (ScalarModeToFieldData), you must call SelectColorArray to choose the field data array to be used to color cells. In this mode, if the poly data has triangle strips, the field data is treated as the celldata for each mini-cell formed by a triangle in the strip rather than the entire strip.
void SetScalarModeToUsePointData ()
 Control how the filter works with scalar point data and cell attribute data. By default (ScalarModeToDefault), the filter will use point data, and if no point data is available, then cell data is used. Alternatively you can explicitly set the filter to use point data (ScalarModeToUsePointData) or cell data (ScalarModeToUseCellData). You can also choose to get the scalars from an array in point field data (ScalarModeToUsePointFieldData) or cell field data (ScalarModeToUseCellFieldData). If scalars are coming from a field data array, you must call SelectColorArray before you call GetColors. When ScalarMode is set to use Field Data (ScalarModeToFieldData), you must call SelectColorArray to choose the field data array to be used to color cells. In this mode, if the poly data has triangle strips, the field data is treated as the celldata for each mini-cell formed by a triangle in the strip rather than the entire strip.
void SetScalarModeToUsePointFieldData ()
 Control how the filter works with scalar point data and cell attribute data. By default (ScalarModeToDefault), the filter will use point data, and if no point data is available, then cell data is used. Alternatively you can explicitly set the filter to use point data (ScalarModeToUsePointData) or cell data (ScalarModeToUseCellData). You can also choose to get the scalars from an array in point field data (ScalarModeToUsePointFieldData) or cell field data (ScalarModeToUseCellFieldData). If scalars are coming from a field data array, you must call SelectColorArray before you call GetColors. When ScalarMode is set to use Field Data (ScalarModeToFieldData), you must call SelectColorArray to choose the field data array to be used to color cells. In this mode, if the poly data has triangle strips, the field data is treated as the celldata for each mini-cell formed by a triangle in the strip rather than the entire strip.
virtual void SetScalarRange (double _arg1, double _arg2)
 Specify range in terms of scalar minimum and maximum (smin,smax). These values are used to map scalars into lookup table. Has no effect when UseLookupTableScalarRange is true.
void SetScalarRange (IntPtr _arg)
 Specify range in terms of scalar minimum and maximum (smin,smax). These values are used to map scalars into lookup table. Has no effect when UseLookupTableScalarRange is true.
virtual void SetScalarVisibility (int _arg)
 Turn on/off flag to control whether scalar data is used to color objects.
virtual void SetStatic (int _arg)
 Turn on/off flag to control whether the mapper's data is static. Static data means that the mapper does not propagate updates down the pipeline, greatly decreasing the time it takes to update many mappers. This should only be used if the data never changes.
virtual void SetUseLookupTableScalarRange (int _arg)
 Control whether the mapper sets the lookuptable range based on its own ScalarRange, or whether it will use the LookupTable ScalarRange regardless of it's own setting. By default the Mapper is allowed to set the LookupTable range, but users who are sharing LookupTables between mappers/actors will probably wish to force the mapper to use the LookupTable unchanged.
new void ShallowCopy (vtkAbstractMapper m)
 Make a shallow copy of this mapper.
virtual void StaticOff ()
 Turn on/off flag to control whether the mapper's data is static. Static data means that the mapper does not propagate updates down the pipeline, greatly decreasing the time it takes to update many mappers. This should only be used if the data never changes.
virtual void StaticOn ()
 Turn on/off flag to control whether the mapper's data is static. Static data means that the mapper does not propagate updates down the pipeline, greatly decreasing the time it takes to update many mappers. This should only be used if the data never changes.
virtual void UseLookupTableScalarRangeOff ()
 Control whether the mapper sets the lookuptable range based on its own ScalarRange, or whether it will use the LookupTable ScalarRange regardless of it's own setting. By default the Mapper is allowed to set the LookupTable range, but users who are sharing LookupTables between mappers/actors will probably wish to force the mapper to use the LookupTable unchanged.
virtual void UseLookupTableScalarRangeOn ()
 Control whether the mapper sets the lookuptable range based on its own ScalarRange, or whether it will use the LookupTable ScalarRange regardless of it's own setting. By default the Mapper is allowed to set the LookupTable range, but users who are sharing LookupTables between mappers/actors will probably wish to force the mapper to use the LookupTable unchanged.
- Public Member Functions inherited from Kitware.VTK.vtkAbstractMapper3D
 vtkAbstractMapper3D (IntPtr rawCppThis, bool callDisposalMethod, bool strong)
 Automatically generated constructor - called from generated code. DO NOT call directly.
double[] GetCenter ()
 Return the Center of this mapper's data.
void GetCenter (IntPtr center)
 Return the Center of this mapper's data.
double GetLength ()
 Return the diagonal length of this mappers bounding box.
virtual int IsARayCastMapper ()
 Is this a ray cast mapper? A subclass would return 1 if the ray caster is needed to generate an image from this mapper.
virtual int IsARenderIntoImageMapper ()
 Is this a "render into image" mapper? A subclass would return 1 if the mapper produces an image by rendering into a software image buffer.
- Public Member Functions inherited from Kitware.VTK.vtkAbstractMapper
 vtkAbstractMapper (IntPtr rawCppThis, bool callDisposalMethod, bool strong)
 Automatically generated constructor - called from generated code. DO NOT call directly.
void AddClippingPlane (vtkPlane plane)
 Specify clipping planes to be applied when the data is mapped (at most 6 clipping planes can be specified).
virtual vtkPlaneCollection GetClippingPlanes ()
 Get/Set the vtkPlaneCollection which specifies the clipping planes.
virtual double GetTimeToDraw ()
 Get the time required to draw the geometry last time it was rendered
void RemoveAllClippingPlanes ()
 Specify clipping planes to be applied when the data is mapped (at most 6 clipping planes can be specified).
void RemoveClippingPlane (vtkPlane plane)
 Specify clipping planes to be applied when the data is mapped (at most 6 clipping planes can be specified).
virtual void SetClippingPlanes (vtkPlaneCollection arg0)
 Get/Set the vtkPlaneCollection which specifies the clipping planes.
void SetClippingPlanes (vtkPlanes planes)
 An alternative way to set clipping planes: use up to six planes found in the supplied instance of the implicit function vtkPlanes.
- Public Member Functions inherited from Kitware.VTK.vtkAlgorithm
 vtkAlgorithm (IntPtr rawCppThis, bool callDisposalMethod, bool strong)
 Automatically generated constructor - called from generated code. DO NOT call directly.
 vtkAlgorithm ()
 Undocumented Block
override void Register (vtkObjectBase o)
 Participate in garbage collection.
virtual void AbortExecuteOff ()
 Set/Get the AbortExecute flag for the process object. Process objects may handle premature termination of execution in different ways.
virtual void AbortExecuteOn ()
 Set/Get the AbortExecute flag for the process object. Process objects may handle premature termination of execution in different ways.
virtual void AddInputConnection (int port, vtkAlgorithmOutput input)
 Add a connection to the given input port index. See SetInputConnection() for details on input connections. This method is the complement to RemoveInputConnection() in that it adds only the connection specified without affecting other connections. Typical usage is
virtual void AddInputConnection (vtkAlgorithmOutput input)
 Add a connection to the given input port index. See SetInputConnection() for details on input connections. This method is the complement to RemoveInputConnection() in that it adds only the connection specified without affecting other connections. Typical usage is
virtual double ComputePriority ()
 Returns the priority of the piece described by the current update extent. The priority is a number between 0.0 and 1.0 with 0 meaning skippable (REQUEST_DATA not needed) and 1.0 meaning important.
void ConvertTotalInputToPortConnection (int ind, ref int port, ref int conn)
 Convenience routine to convert from a linear ordering of input connections to a port/connection pair.
virtual int GetAbortExecute ()
 Set/Get the AbortExecute flag for the process object. Process objects may handle premature termination of execution in different ways.
virtual uint GetErrorCode ()
 The error code contains a possible error that occured while reading or writing the file.
vtkExecutive GetExecutive ()
 Get this algorithm's executive. If it has none, a default executive will be created.
virtual vtkInformation GetInformation ()
 Set/Get the information object associated with this algorithm.
vtkInformation GetInputArrayInformation (int idx)
 Get the info object for the specified input array to this algorithm
vtkAlgorithmOutput GetInputConnection (int port, int index)
 Get the algorithm output port connected to an input port.
vtkDataObject GetInputDataObject (int port, int connection)
 Get the data object that will contain the algorithm input for the given port and given connection.
vtkInformation GetInputPortInformation (int port)
 Get the information object associated with an input port. There is one input port per kind of input to the algorithm. Each input port tells executives what kind of data and downstream requests this algorithm can handle for that input.
int GetNumberOfInputConnections (int port)
 Get the number of inputs currently connected to a port.
int GetNumberOfInputPorts ()
 Get the number of input ports used by the algorithm.
int GetNumberOfOutputPorts ()
 Get the number of output ports provided by the algorithm.
vtkDataObject GetOutputDataObject (int port)
 Get the data object that will contain the algorithm output for the given port.
vtkAlgorithmOutput GetOutputPort (int index)
 Get a proxy object corresponding to the given output port of this algorithm. The proxy object can be passed to another algorithm's SetInputConnection(), AddInputConnection(), and RemoveInputConnection() methods to modify pipeline connectivity.
vtkAlgorithmOutput GetOutputPort ()
 Get a proxy object corresponding to the given output port of this algorithm. The proxy object can be passed to another algorithm's SetInputConnection(), AddInputConnection(), and RemoveInputConnection() methods to modify pipeline connectivity.
vtkInformation GetOutputPortInformation (int port)
 Get the information object associated with an output port. There is one output port per output from the algorithm. Each output port tells executives what kind of upstream requests this algorithm can handle for that output.
virtual double GetProgress ()
 Set/Get the execution progress of a process object.
virtual double GetProgressMaxValue ()
 Set/Get the execution progress of a process object.
virtual double GetProgressMinValue ()
 Set/Get the execution progress of a process object.
virtual string GetProgressText ()
 Set the current text message associated with the progress state. This may be used by a calling process/GUI. Note: Because SetProgressText() is called from inside RequestData() it does not modify the algorithm object. Algorithms are not allowed to modify themselves from inside RequestData().
virtual int GetReleaseDataFlag ()
 Turn release data flag on or off for all output ports.
int GetTotalNumberOfInputConnections ()
 Get the total number of inputs for this algorithm
int HasExecutive ()
 Check whether this algorithm has an assigned executive. This will NOT create a default executive.
virtual int ModifyRequest (vtkInformation request, int when)
 This method gives the algorithm a chance to modify the contents of a request before or after (specified in the when argument) it is forwarded. The default implementation is empty. Returns 1 on success, 0 on failure. When can be either vtkExecutive::BeforeForward or vtkExecutive::AfterForward.
int ProcessRequest (vtkInformation request, vtkCollection inInfo, vtkInformationVector outInfo)
 Version of ProcessRequest() that is wrapped. This converts the collection to an array and calls the other version.
void ReleaseDataFlagOff ()
 Turn release data flag on or off for all output ports.
void ReleaseDataFlagOn ()
 Turn release data flag on or off for all output ports.
void RemoveAllInputs ()
 Remove all the input data.
virtual void RemoveInputConnection (int port, vtkAlgorithmOutput input)
 Remove a connection from the given input port index. See SetInputConnection() for details on input connection. This method is the complement to AddInputConnection() in that it removes only the connection specified without affecting other connections. Typical usage is
virtual void SetAbortExecute (int _arg)
 Set/Get the AbortExecute flag for the process object. Process objects may handle premature termination of execution in different ways.
virtual void SetExecutive (vtkExecutive executive)
 Set this algorithm's executive. This algorithm is removed from any executive to which it has previously been assigned and then assigned to the given executive.
virtual void SetInformation (vtkInformation arg0)
 Set/Get the information object associated with this algorithm.
virtual void SetInputArrayToProcess (int idx, int port, int connection, int fieldAssociation, string name)
 Set the input data arrays that this algorithm will process. Specifically the idx array that this algorithm will process (starting from 0) is the array on port, connection with the specified association and name or attribute type (such as SCALARS). The fieldAssociation refers to which field in the data object the array is stored. See vtkDataObject::FieldAssociations for detail.
virtual void SetInputArrayToProcess (int idx, int port, int connection, int fieldAssociation, int fieldAttributeType)
 Set the input data arrays that this algorithm will process. Specifically the idx array that this algorithm will process (starting from 0) is the array on port, connection with the specified association and name or attribute type (such as SCALARS). The fieldAssociation refers to which field in the data object the array is stored. See vtkDataObject::FieldAssociations for detail.
virtual void SetInputArrayToProcess (int idx, vtkInformation info)
 Set the input data arrays that this algorithm will process. Specifically the idx array that this algorithm will process (starting from 0) is the array on port, connection with the specified association and name or attribute type (such as SCALARS). The fieldAssociation refers to which field in the data object the array is stored. See vtkDataObject::FieldAssociations for detail.
virtual void SetInputArrayToProcess (int idx, int port, int connection, string fieldAssociation, string attributeTypeorName)
 String based versions of SetInputArrayToProcess(). Because fieldAssociation and fieldAttributeType are enums, they cannot be easily accessed from scripting language. These methods provides an easy and safe way of passing association and attribute type information. Field association is one of the following:
virtual void SetInputConnection (int port, vtkAlgorithmOutput input)
 Set the connection for the given input port index. Each input port of a filter has a specific purpose. A port may have zero or more connections and the required number is specified by each filter. Setting the connection with this method removes all other connections from the port. To add more than one connection use AddInputConnection().
virtual void SetInputConnection (vtkAlgorithmOutput input)
 Set the connection for the given input port index. Each input port of a filter has a specific purpose. A port may have zero or more connections and the required number is specified by each filter. Setting the connection with this method removes all other connections from the port. To add more than one connection use AddInputConnection().
virtual void SetProgress (double _arg)
 Set/Get the execution progress of a process object.
void SetProgressText (string ptext)
 Set the current text message associated with the progress state. This may be used by a calling process/GUI. Note: Because SetProgressText() is called from inside RequestData() it does not modify the algorithm object. Algorithms are not allowed to modify themselves from inside RequestData().
virtual void SetReleaseDataFlag (int arg0)
 Turn release data flag on or off for all output ports.
virtual void Update ()
 Bring this algorithm's outputs up-to-date.
int UpdateExtentIsEmpty (vtkDataObject output)
 This detects when the UpdateExtent will generate no data This condition is satisfied when the UpdateExtent has zero volume (0,-1,...) or the UpdateNumberOfPieces is 0. The source uses this call to determine whether to call Execute.
int UpdateExtentIsEmpty (vtkInformation pinfo, int extentType)
 This detects when the UpdateExtent will generate no data This condition is satisfied when the UpdateExtent has zero volume (0,-1,...) or the UpdateNumberOfPieces is 0. The source uses this call to determine whether to call Execute.
virtual void UpdateInformation ()
 Backward compatibility method to invoke UpdateInformation on executive.
void UpdateProgress (double amount)
 Update the progress of the process object. If a ProgressMethod exists, executes it. Then set the Progress ivar to amount. The parameter amount should range between (0,1).
virtual void UpdateWholeExtent ()
 Bring this algorithm's outputs up-to-date.
- Public Member Functions inherited from Kitware.VTK.vtkObject
 vtkObject (IntPtr rawCppThis, bool callDisposalMethod, bool strong)
 Automatically generated constructor - called from generated code. DO NOT call directly.
 vtkObject ()
 Create an object with Debug turned off, modified time initialized to zero, and reference counting on.
uint AddObserver (uint arg0, vtkCommand arg1, float priority)
 This is a global flag that controls whether any debug, warning or error messages are displayed.
uint AddObserver (string arg0, vtkCommand arg1, float priority)
 This is a global flag that controls whether any debug, warning or error messages are displayed.
virtual void DebugOff ()
 Turn debugging output off.
virtual void DebugOn ()
 Turn debugging output on.
vtkCommand GetCommand (uint tag)
 This is a global flag that controls whether any debug, warning or error messages are displayed.
byte GetDebug ()
 Get the value of the debug flag.
int HasObserver (uint arg0, vtkCommand arg1)
 This is a global flag that controls whether any debug, warning or error messages are displayed.
int HasObserver (string arg0, vtkCommand arg1)
 This is a global flag that controls whether any debug, warning or error messages are displayed.
int HasObserver (uint arg0)
 This is a global flag that controls whether any debug, warning or error messages are displayed.
int HasObserver (string arg0)
 This is a global flag that controls whether any debug, warning or error messages are displayed.
int InvokeEvent (uint arg0, IntPtr callData)
 This is a global flag that controls whether any debug, warning or error messages are displayed.
int InvokeEvent (string arg0, IntPtr callData)
 This is a global flag that controls whether any debug, warning or error messages are displayed.
int InvokeEvent (uint arg0)
 This is a global flag that controls whether any debug, warning or error messages are displayed.
int InvokeEvent (string arg0)
 This is a global flag that controls whether any debug, warning or error messages are displayed.
virtual void Modified ()
 Update the modification time for this object. Many filters rely on the modification time to determine if they need to recompute their data. The modification time is a unique monotonically increasing unsigned long integer.
void RemoveAllObservers ()
 This is a global flag that controls whether any debug, warning or error messages are displayed.
void RemoveObserver (vtkCommand arg0)
 This is a global flag that controls whether any debug, warning or error messages are displayed.
void RemoveObserver (uint tag)
 This is a global flag that controls whether any debug, warning or error messages are displayed.
void RemoveObservers (uint arg0, vtkCommand arg1)
 This is a global flag that controls whether any debug, warning or error messages are displayed.
void RemoveObservers (string arg0, vtkCommand arg1)
 This is a global flag that controls whether any debug, warning or error messages are displayed.
void RemoveObservers (uint arg0)
 This is a global flag that controls whether any debug, warning or error messages are displayed.
void RemoveObservers (string arg0)
 This is a global flag that controls whether any debug, warning or error messages are displayed.
void SetDebug (byte debugFlag)
 Set the value of the debug flag. A non-zero value turns debugging on.
override string ToString ()
 Returns the result of calling vtkObject::Print as a C# string.
delegate void vtkObjectEventHandler (vtkObject sender, vtkObjectEventArgs e)
 Generic signature for all vtkObject events.
void RemoveAllHandlersForAllEvents ()
 Call RemoveAllHandlers on each non-null vtkObjectEventRelay. TODO: This method needs to get called by the generated Dispose. Make that happen...
- Public Member Functions inherited from Kitware.VTK.vtkObjectBase
 vtkObjectBase (IntPtr rawCppThis, bool callDisposalMethod, bool strong)
 Automatically generated constructor - called from generated code. DO NOT call directly.
 vtkObjectBase ()
 Create an object with Debug turned off, modified time initialized to zero, and reference counting on.
virtual void FastDelete ()
 Delete a reference to this object. This version will not invoke garbage collection and can potentially leak the object if it is part of a reference loop. Use this method only when it is known that the object has another reference and would not be collected if a full garbage collection check were done.
string GetClassName ()
 Return the class name as a string. This method is defined in all subclasses of vtkObjectBase with the vtkTypeMacro found in vtkSetGet.h.
int GetReferenceCount ()
 Return the current reference count of this object.
void SetReferenceCount (int arg0)
 Sets the reference count. (This is very dangerous, use with care.)

Static Public Member Functions

static int GetGlobalImmediateModeRendering ()
 Turn on/off flag to control whether data is rendered using immediate mode or note. Immediate mode rendering tends to be slower but it can handle larger datasets. The default value is immediate mode off. If you are having problems rendering a large dataset you might want to consider using immediate more rendering.
static int GetResolveCoincidentTopology ()
 Set/Get a global flag that controls whether coincident topology (e.g., a line on top of a polygon) is shifted to avoid z-buffer resolution (and hence rendering problems). If not off, there are two methods to choose from. PolygonOffset uses graphics systems calls to shift polygons, but does not distinguish vertices and lines from one another. ShiftZBuffer remaps the z-buffer to distinguish vertices, lines, and polygons, but does not always produce acceptable results. If you use the ShiftZBuffer approach, you may also want to set the ResolveCoincidentTopologyZShift value. (Note: not all mappers/graphics systems implement this functionality.)
static int GetResolveCoincidentTopologyPolygonOffsetFaces ()
 Used when ResolveCoincidentTopology is set to PolygonOffset. The polygon offset can be applied either to the solid polygonal faces or the lines/vertices. When set (default), the offset is applied to the faces otherwise it is applied to lines and vertices. This is a global variable.
static void GetResolveCoincidentTopologyPolygonOffsetParameters (ref double factor, ref double units)
 Used to set the polygon offset scale factor and units. Used when ResolveCoincidentTopology is set to PolygonOffset. These are global variables.
static double GetResolveCoincidentTopologyZShift ()
 Used to set the z-shift if ResolveCoincidentTopology is set to ShiftZBuffer. This is a global variable.
static void GlobalImmediateModeRenderingOff ()
 Turn on/off flag to control whether data is rendered using immediate mode or note. Immediate mode rendering tends to be slower but it can handle larger datasets. The default value is immediate mode off. If you are having problems rendering a large dataset you might want to consider using immediate more rendering.
static void GlobalImmediateModeRenderingOn ()
 Turn on/off flag to control whether data is rendered using immediate mode or note. Immediate mode rendering tends to be slower but it can handle larger datasets. The default value is immediate mode off. If you are having problems rendering a large dataset you might want to consider using immediate more rendering.
static new int IsTypeOf (string type)
 Undocumented Block
static new vtkMapper SafeDownCast (vtkObjectBase o)
 Undocumented Block
static void SetGlobalImmediateModeRendering (int val)
 Turn on/off flag to control whether data is rendered using immediate mode or note. Immediate mode rendering tends to be slower but it can handle larger datasets. The default value is immediate mode off. If you are having problems rendering a large dataset you might want to consider using immediate more rendering.
static void SetResolveCoincidentTopology (int val)
 Set/Get a global flag that controls whether coincident topology (e.g., a line on top of a polygon) is shifted to avoid z-buffer resolution (and hence rendering problems). If not off, there are two methods to choose from. PolygonOffset uses graphics systems calls to shift polygons, but does not distinguish vertices and lines from one another. ShiftZBuffer remaps the z-buffer to distinguish vertices, lines, and polygons, but does not always produce acceptable results. If you use the ShiftZBuffer approach, you may also want to set the ResolveCoincidentTopologyZShift value. (Note: not all mappers/graphics systems implement this functionality.)
static void SetResolveCoincidentTopologyPolygonOffsetFaces (int faces)
 Used when ResolveCoincidentTopology is set to PolygonOffset. The polygon offset can be applied either to the solid polygonal faces or the lines/vertices. When set (default), the offset is applied to the faces otherwise it is applied to lines and vertices. This is a global variable.
static void SetResolveCoincidentTopologyPolygonOffsetParameters (double factor, double units)
 Used to set the polygon offset scale factor and units. Used when ResolveCoincidentTopology is set to PolygonOffset. These are global variables.
static void SetResolveCoincidentTopologyToDefault ()
 Set/Get a global flag that controls whether coincident topology (e.g., a line on top of a polygon) is shifted to avoid z-buffer resolution (and hence rendering problems). If not off, there are two methods to choose from. PolygonOffset uses graphics systems calls to shift polygons, but does not distinguish vertices and lines from one another. ShiftZBuffer remaps the z-buffer to distinguish vertices, lines, and polygons, but does not always produce acceptable results. If you use the ShiftZBuffer approach, you may also want to set the ResolveCoincidentTopologyZShift value. (Note: not all mappers/graphics systems implement this functionality.)
static void SetResolveCoincidentTopologyToOff ()
 Set/Get a global flag that controls whether coincident topology (e.g., a line on top of a polygon) is shifted to avoid z-buffer resolution (and hence rendering problems). If not off, there are two methods to choose from. PolygonOffset uses graphics systems calls to shift polygons, but does not distinguish vertices and lines from one another. ShiftZBuffer remaps the z-buffer to distinguish vertices, lines, and polygons, but does not always produce acceptable results. If you use the ShiftZBuffer approach, you may also want to set the ResolveCoincidentTopologyZShift value. (Note: not all mappers/graphics systems implement this functionality.)
static void SetResolveCoincidentTopologyToPolygonOffset ()
 Set/Get a global flag that controls whether coincident topology (e.g., a line on top of a polygon) is shifted to avoid z-buffer resolution (and hence rendering problems). If not off, there are two methods to choose from. PolygonOffset uses graphics systems calls to shift polygons, but does not distinguish vertices and lines from one another. ShiftZBuffer remaps the z-buffer to distinguish vertices, lines, and polygons, but does not always produce acceptable results. If you use the ShiftZBuffer approach, you may also want to set the ResolveCoincidentTopologyZShift value. (Note: not all mappers/graphics systems implement this functionality.)
static void SetResolveCoincidentTopologyToShiftZBuffer ()
 Set/Get a global flag that controls whether coincident topology (e.g., a line on top of a polygon) is shifted to avoid z-buffer resolution (and hence rendering problems). If not off, there are two methods to choose from. PolygonOffset uses graphics systems calls to shift polygons, but does not distinguish vertices and lines from one another. ShiftZBuffer remaps the z-buffer to distinguish vertices, lines, and polygons, but does not always produce acceptable results. If you use the ShiftZBuffer approach, you may also want to set the ResolveCoincidentTopologyZShift value. (Note: not all mappers/graphics systems implement this functionality.)
static void SetResolveCoincidentTopologyZShift (double val)
 Used to set the z-shift if ResolveCoincidentTopology is set to ShiftZBuffer. This is a global variable.

Public Attributes

new const string MRFullTypeName = "Kitware.VTK.vtkMapper"
 Automatically generated type registration mechanics.
- Public Attributes inherited from Kitware.VTK.vtkAbstractMapper3D
new const string MRFullTypeName = "Kitware.VTK.vtkAbstractMapper3D"
 Automatically generated type registration mechanics.
- Public Attributes inherited from Kitware.VTK.vtkAbstractMapper
new const string MRFullTypeName = "Kitware.VTK.vtkAbstractMapper"
 Automatically generated type registration mechanics.
- Public Attributes inherited from Kitware.VTK.vtkAlgorithm
new const string MRFullTypeName = "Kitware.VTK.vtkAlgorithm"
 Automatically generated type registration mechanics.
- Public Attributes inherited from Kitware.VTK.vtkObject
new const string MRFullTypeName = "Kitware.VTK.vtkObject"
 Automatically generated type registration mechanics.
- Public Attributes inherited from Kitware.VTK.vtkObjectBase
new const string MRFullTypeName = "Kitware.VTK.vtkObjectBase"
 Automatically generated type registration mechanics.
- Public Attributes inherited from Kitware.VTK.WrappedObject
const string vtkChartsEL_dll = "libKitware.VTK.vtkCharts.Unmanaged.so"
 Export layer functions for 'vtkCharts' are exported from the DLL named by the value of this variable.
const string vtkCommonEL_dll = "libKitware.VTK.vtkCommon.Unmanaged.so"
 Export layer functions for 'vtkCommon' are exported from the DLL named by the value of this variable.
const string vtkFilteringEL_dll = "libKitware.VTK.vtkFiltering.Unmanaged.so"
 Export layer functions for 'vtkFiltering' are exported from the DLL named by the value of this variable.
const string vtkGenericFilteringEL_dll = "libKitware.VTK.vtkGenericFiltering.Unmanaged.so"
 Export layer functions for 'vtkGenericFiltering' are exported from the DLL named by the value of this variable.
const string vtkGeovisEL_dll = "libKitware.VTK.vtkGeovis.Unmanaged.so"
 Export layer functions for 'vtkGeovis' are exported from the DLL named by the value of this variable.
const string vtkGraphicsEL_dll = "libKitware.VTK.vtkGraphics.Unmanaged.so"
 Export layer functions for 'vtkGraphics' are exported from the DLL named by the value of this variable.
const string vtkHybridEL_dll = "libKitware.VTK.vtkHybrid.Unmanaged.so"
 Export layer functions for 'vtkHybrid' are exported from the DLL named by the value of this variable.
const string vtkIOEL_dll = "libKitware.VTK.vtkIO.Unmanaged.so"
 Export layer functions for 'vtkIO' are exported from the DLL named by the value of this variable.
const string vtkImagingEL_dll = "libKitware.VTK.vtkImaging.Unmanaged.so"
 Export layer functions for 'vtkImaging' are exported from the DLL named by the value of this variable.
const string vtkInfovisEL_dll = "libKitware.VTK.vtkInfovis.Unmanaged.so"
 Export layer functions for 'vtkInfovis' are exported from the DLL named by the value of this variable.
const string vtkParallelEL_dll = "libKitware.VTK.vtkParallel.Unmanaged.so"
 Export layer functions for 'vtkParallel' are exported from the DLL named by the value of this variable.
const string vtkRenderingEL_dll = "libKitware.VTK.vtkRendering.Unmanaged.so"
 Export layer functions for 'vtkRendering' are exported from the DLL named by the value of this variable.
const string vtkViewsEL_dll = "libKitware.VTK.vtkViews.Unmanaged.so"
 Export layer functions for 'vtkViews' are exported from the DLL named by the value of this variable.
const string vtkVolumeRenderingEL_dll = "libKitware.VTK.vtkVolumeRendering.Unmanaged.so"
 Export layer functions for 'vtkVolumeRendering' are exported from the DLL named by the value of this variable.
const string vtkWidgetsEL_dll = "libKitware.VTK.vtkWidgets.Unmanaged.so"
 Export layer functions for 'vtkWidgets' are exported from the DLL named by the value of this variable.

Static Public Attributes

static new readonly string MRClassNameKey = "9vtkMapper"
 Automatically generated type registration mechanics.
- Static Public Attributes inherited from Kitware.VTK.vtkAbstractMapper3D
static new readonly string MRClassNameKey = "19vtkAbstractMapper3D"
 Automatically generated type registration mechanics.
- Static Public Attributes inherited from Kitware.VTK.vtkAbstractMapper
static new readonly string MRClassNameKey = "17vtkAbstractMapper"
 Automatically generated type registration mechanics.
- Static Public Attributes inherited from Kitware.VTK.vtkAlgorithm
static new readonly string MRClassNameKey = "12vtkAlgorithm"
 Automatically generated type registration mechanics.
- Static Public Attributes inherited from Kitware.VTK.vtkObject
static new readonly string MRClassNameKey = "9vtkObject"
 Automatically generated type registration mechanics.
- Static Public Attributes inherited from Kitware.VTK.vtkObjectBase
static new readonly string MRClassNameKey = "13vtkObjectBase"
 Automatically generated type registration mechanics.

Protected Member Functions

override void Dispose (bool disposing)
 Automatically generated protected Dispose method - called from public Dispose or the C# destructor. DO NOT call directly.

Static Private Member Functions

static vtkMapper ()
 Automatically generated type registration mechanics.

Additional Inherited Members

- Properties inherited from Kitware.VTK.vtkObject
Kitware.VTK.vtkObject.vtkObjectEventHandler AbortCheckEvt
 The AbortCheckEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.AbortCheckEvent as the eventId parameter.
Kitware.VTK.vtkObject.vtkObjectEventHandler AnimationCueTickEvt
 The AnimationCueTickEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.AnimationCueTickEvent as the eventId parameter.
Kitware.VTK.vtkObject.vtkObjectEventHandler AnyEvt
 The AnyEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.AnyEvent as the eventId parameter.
Kitware.VTK.vtkObject.vtkObjectEventHandler CharEvt
 The CharEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.CharEvent as the eventId parameter.
Kitware.VTK.vtkObject.vtkObjectEventHandler ConfigureEvt
 The ConfigureEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.ConfigureEvent as the eventId parameter.
Kitware.VTK.vtkObject.vtkObjectEventHandler ConnectionClosedEvt
 The ConnectionClosedEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.ConnectionClosedEvent as the eventId parameter.
Kitware.VTK.vtkObject.vtkObjectEventHandler ConnectionCreatedEvt
 The ConnectionCreatedEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.ConnectionCreatedEvent as the eventId parameter.
Kitware.VTK.vtkObject.vtkObjectEventHandler CreateTimerEvt
 The CreateTimerEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.CreateTimerEvent as the eventId parameter.
Kitware.VTK.vtkObject.vtkObjectEventHandler CursorChangedEvt
 The CursorChangedEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.CursorChangedEvent as the eventId parameter.
Kitware.VTK.vtkObject.vtkObjectEventHandler DeleteEvt
 The DeleteEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.DeleteEvent as the eventId parameter.
Kitware.VTK.vtkObject.vtkObjectEventHandler DestroyTimerEvt
 The DestroyTimerEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.DestroyTimerEvent as the eventId parameter.
Kitware.VTK.vtkObject.vtkObjectEventHandler DisableEvt
 The DisableEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.DisableEvent as the eventId parameter.
Kitware.VTK.vtkObject.vtkObjectEventHandler DomainModifiedEvt
 The DomainModifiedEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.DomainModifiedEvent as the eventId parameter.
Kitware.VTK.vtkObject.vtkObjectEventHandler EnableEvt
 The EnableEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.EnableEvent as the eventId parameter.
Kitware.VTK.vtkObject.vtkObjectEventHandler EndAnimationCueEvt
 The EndAnimationCueEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.EndAnimationCueEvent as the eventId parameter.
Kitware.VTK.vtkObject.vtkObjectEventHandler EndEvt
 The EndEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.EndEvent as the eventId parameter.
Kitware.VTK.vtkObject.vtkObjectEventHandler EndInteractionEvt
 The EndInteractionEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.EndInteractionEvent as the eventId parameter.
Kitware.VTK.vtkObject.vtkObjectEventHandler EndPickEvt
 The EndPickEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.EndPickEvent as the eventId parameter.
Kitware.VTK.vtkObject.vtkObjectEventHandler EndWindowLevelEvt
 The EndWindowLevelEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.EndWindowLevelEvent as the eventId parameter.
Kitware.VTK.vtkObject.vtkObjectEventHandler EnterEvt
 The EnterEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.EnterEvent as the eventId parameter.
Kitware.VTK.vtkObject.vtkObjectEventHandler ErrorEvt
 The ErrorEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.ErrorEvent as the eventId parameter.
Kitware.VTK.vtkObject.vtkObjectEventHandler ExecuteInformationEvt
 The ExecuteInformationEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.ExecuteInformationEvent as the eventId parameter.
Kitware.VTK.vtkObject.vtkObjectEventHandler ExitEvt
 The ExitEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.ExitEvent as the eventId parameter.
Kitware.VTK.vtkObject.vtkObjectEventHandler ExposeEvt
 The ExposeEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.ExposeEvent as the eventId parameter.
Kitware.VTK.vtkObject.vtkObjectEventHandler InteractionEvt
 The InteractionEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.InteractionEvent as the eventId parameter.
Kitware.VTK.vtkObject.vtkObjectEventHandler KeyPressEvt
 The KeyPressEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.KeyPressEvent as the eventId parameter.
Kitware.VTK.vtkObject.vtkObjectEventHandler KeyReleaseEvt
 The KeyReleaseEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.KeyReleaseEvent as the eventId parameter.
Kitware.VTK.vtkObject.vtkObjectEventHandler LeaveEvt
 The LeaveEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.LeaveEvent as the eventId parameter.
Kitware.VTK.vtkObject.vtkObjectEventHandler LeftButtonPressEvt
 The LeftButtonPressEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.LeftButtonPressEvent as the eventId parameter.
Kitware.VTK.vtkObject.vtkObjectEventHandler LeftButtonReleaseEvt
 The LeftButtonReleaseEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.LeftButtonReleaseEvent as the eventId parameter.
Kitware.VTK.vtkObject.vtkObjectEventHandler MiddleButtonPressEvt
 The MiddleButtonPressEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.MiddleButtonPressEvent as the eventId parameter.
Kitware.VTK.vtkObject.vtkObjectEventHandler MiddleButtonReleaseEvt
 The MiddleButtonReleaseEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.MiddleButtonReleaseEvent as the eventId parameter.
Kitware.VTK.vtkObject.vtkObjectEventHandler ModifiedEvt
 The ModifiedEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.ModifiedEvent as the eventId parameter.
Kitware.VTK.vtkObject.vtkObjectEventHandler MouseMoveEvt
 The MouseMoveEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.MouseMoveEvent as the eventId parameter.
Kitware.VTK.vtkObject.vtkObjectEventHandler MouseWheelBackwardEvt
 The MouseWheelBackwardEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.MouseWheelBackwardEvent as the eventId parameter.
Kitware.VTK.vtkObject.vtkObjectEventHandler MouseWheelForwardEvt
 The MouseWheelForwardEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.MouseWheelForwardEvent as the eventId parameter.
Kitware.VTK.vtkObject.vtkObjectEventHandler PickEvt
 The PickEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.PickEvent as the eventId parameter.
Kitware.VTK.vtkObject.vtkObjectEventHandler PlacePointEvt
 The PlacePointEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.PlacePointEvent as the eventId parameter.
Kitware.VTK.vtkObject.vtkObjectEventHandler PlaceWidgetEvt
 The PlaceWidgetEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.PlaceWidgetEvent as the eventId parameter.
Kitware.VTK.vtkObject.vtkObjectEventHandler ProgressEvt
 The ProgressEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.ProgressEvent as the eventId parameter.
Kitware.VTK.vtkObject.vtkObjectEventHandler PropertyModifiedEvt
 The PropertyModifiedEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.PropertyModifiedEvent as the eventId parameter.
Kitware.VTK.vtkObject.vtkObjectEventHandler RegisterEvt
 The RegisterEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.RegisterEvent as the eventId parameter.
Kitware.VTK.vtkObject.vtkObjectEventHandler RenderEvt
 The RenderEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.RenderEvent as the eventId parameter.
Kitware.VTK.vtkObject.vtkObjectEventHandler RenderWindowMessageEvt
 The RenderWindowMessageEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.RenderWindowMessageEvent as the eventId parameter.
Kitware.VTK.vtkObject.vtkObjectEventHandler ResetCameraClippingRangeEvt
 The ResetCameraClippingRangeEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.ResetCameraClippingRangeEvent as the eventId parameter.
Kitware.VTK.vtkObject.vtkObjectEventHandler ResetCameraEvt
 The ResetCameraEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.ResetCameraEvent as the eventId parameter.
Kitware.VTK.vtkObject.vtkObjectEventHandler ResetWindowLevelEvt
 The ResetWindowLevelEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.ResetWindowLevelEvent as the eventId parameter.
Kitware.VTK.vtkObject.vtkObjectEventHandler RightButtonPressEvt
 The RightButtonPressEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.RightButtonPressEvent as the eventId parameter.
Kitware.VTK.vtkObject.vtkObjectEventHandler RightButtonReleaseEvt
 The RightButtonReleaseEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.RightButtonReleaseEvent as the eventId parameter.
Kitware.VTK.vtkObject.vtkObjectEventHandler SelectionChangedEvt
 The SelectionChangedEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.SelectionChangedEvent as the eventId parameter.
Kitware.VTK.vtkObject.vtkObjectEventHandler SetOutputEvt
 The SetOutputEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.SetOutputEvent as the eventId parameter.
Kitware.VTK.vtkObject.vtkObjectEventHandler StartAnimationCueEvt
 The StartAnimationCueEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.StartAnimationCueEvent as the eventId parameter.
Kitware.VTK.vtkObject.vtkObjectEventHandler StartEvt
 The StartEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.StartEvent as the eventId parameter.
Kitware.VTK.vtkObject.vtkObjectEventHandler StartInteractionEvt
 The StartInteractionEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.StartInteractionEvent as the eventId parameter.
Kitware.VTK.vtkObject.vtkObjectEventHandler StartPickEvt
 The StartPickEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.StartPickEvent as the eventId parameter.
Kitware.VTK.vtkObject.vtkObjectEventHandler StartWindowLevelEvt
 The StartWindowLevelEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.StartWindowLevelEvent as the eventId parameter.
Kitware.VTK.vtkObject.vtkObjectEventHandler TimerEvt
 The TimerEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.TimerEvent as the eventId parameter.
Kitware.VTK.vtkObject.vtkObjectEventHandler UnRegisterEvt
 The UnRegisterEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.UnRegisterEvent as the eventId parameter.
Kitware.VTK.vtkObject.vtkObjectEventHandler UpdateEvt
 The UpdateEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.UpdateEvent as the eventId parameter.
Kitware.VTK.vtkObject.vtkObjectEventHandler UpdateInformationEvt
 The UpdateInformationEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.UpdateInformationEvent as the eventId parameter.
Kitware.VTK.vtkObject.vtkObjectEventHandler UpdatePropertyEvt
 The UpdatePropertyEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.UpdatePropertyEvent as the eventId parameter.
Kitware.VTK.vtkObject.vtkObjectEventHandler VolumeMapperComputeGradientsEndEvt
 The VolumeMapperComputeGradientsEndEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.VolumeMapperComputeGradientsEndEvent as the eventId parameter.
Kitware.VTK.vtkObject.vtkObjectEventHandler VolumeMapperComputeGradientsProgressEvt
 The VolumeMapperComputeGradientsProgressEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.VolumeMapperComputeGradientsProgressEvent as the eventId parameter.
Kitware.VTK.vtkObject.vtkObjectEventHandler VolumeMapperComputeGradientsStartEvt
 The VolumeMapperComputeGradientsStartEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.VolumeMapperComputeGradientsStartEvent as the eventId parameter.
Kitware.VTK.vtkObject.vtkObjectEventHandler VolumeMapperRenderEndEvt
 The VolumeMapperRenderEndEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.VolumeMapperRenderEndEvent as the eventId parameter.
Kitware.VTK.vtkObject.vtkObjectEventHandler VolumeMapperRenderProgressEvt
 The VolumeMapperRenderProgressEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.VolumeMapperRenderProgressEvent as the eventId parameter.
Kitware.VTK.vtkObject.vtkObjectEventHandler VolumeMapperRenderStartEvt
 The VolumeMapperRenderStartEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.VolumeMapperRenderStartEvent as the eventId parameter.
Kitware.VTK.vtkObject.vtkObjectEventHandler WarningEvt
 The WarningEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.WarningEvent as the eventId parameter.
Kitware.VTK.vtkObject.vtkObjectEventHandler WidgetActivateEvt
 The WidgetActivateEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.WidgetActivateEvent as the eventId parameter.
Kitware.VTK.vtkObject.vtkObjectEventHandler WidgetModifiedEvt
 The WidgetModifiedEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.WidgetModifiedEvent as the eventId parameter.
Kitware.VTK.vtkObject.vtkObjectEventHandler WidgetValueChangedEvt
 The WidgetValueChangedEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.WidgetValueChangedEvent as the eventId parameter.
Kitware.VTK.vtkObject.vtkObjectEventHandler WindowLevelEvt
 The WindowLevelEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.WindowLevelEvent as the eventId parameter.
Kitware.VTK.vtkObject.vtkObjectEventHandler WrongTagEvt
 The WrongTagEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.WrongTagEvent as the eventId parameter.

Detailed Description

vtkMapper - abstract class specifies interface to map data to graphics primitives

Description vtkMapper is an abstract class to specify interface between data and graphics primitives. Subclasses of vtkMapper map data through a lookuptable and control the creation of rendering primitives that interface to the graphics library. The mapping can be controlled by supplying a lookup table and specifying a scalar range to map data through.

There are several important control mechanisms affecting the behavior of this object. The ScalarVisibility flag controls whether scalar data (if any) controls the color of the associated actor(s) that refer to the mapper. The ScalarMode ivar is used to determine whether scalar point data or cell data is used to color the object. By default, point data scalars are used unless there are none, in which cell scalars are used. Or you can explicitly control whether to use point or cell scalar data. Finally, the mapping of scalars through the lookup table varies depending on the setting of the ColorMode flag. See the documentation for the appropriate methods for an explanation.

Another important feature of this class is whether to use immediate mode rendering (ImmediateModeRenderingOn) or display list rendering (ImmediateModeRenderingOff). If display lists are used, a data structure is constructed (generally in the rendering library) which can then be rapidly traversed and rendered by the rendering library. The disadvantage of display lists is that they require additionally memory which may affect the performance of the system.

Another important feature of the mapper is the ability to shift the z-buffer to resolve coincident topology. For example, if you'd like to draw a mesh with some edges a different color, and the edges lie on the mesh, this feature can be useful to get nice looking lines. (See the ResolveCoincidentTopology-related methods.)

Constructor & Destructor Documentation

static Kitware.VTK.vtkMapper.vtkMapper ( )
staticprivate

Automatically generated type registration mechanics.

Kitware.VTK.vtkMapper.vtkMapper ( IntPtr  rawCppThis,
bool  callDisposalMethod,
bool  strong 
)

Automatically generated constructor - called from generated code. DO NOT call directly.

Member Function Documentation

void Kitware.VTK.vtkMapper.ColorByArrayComponent ( int  arrayNum,
int  component 
)

Legacy: These methods used to be used to specify the array component. It is better to do this in the lookup table.

void Kitware.VTK.vtkMapper.ColorByArrayComponent ( string  arrayName,
int  component 
)

Legacy: These methods used to be used to specify the array component. It is better to do this in the lookup table.

virtual void Kitware.VTK.vtkMapper.CreateDefaultLookupTable ( )
virtual

Create default lookup table. Generally used to create one when none is available with the scalar data.

override void Kitware.VTK.vtkMapper.Dispose ( bool  disposing)
protected
int Kitware.VTK.vtkMapper.GetArrayAccessMode ( )

Get the array name or number and component to color by.

int Kitware.VTK.vtkMapper.GetArrayComponent ( )

Get the array name or number and component to color by.

int Kitware.VTK.vtkMapper.GetArrayId ( )

Get the array name or number and component to color by.

string Kitware.VTK.vtkMapper.GetArrayName ( )

Get the array name or number and component to color by.

override double [] Kitware.VTK.vtkMapper.GetBounds ( )
virtual

Return bounding box (array of six doubles) of data expressed as (xmin,xmax, ymin,ymax, zmin,zmax).

Reimplemented from Kitware.VTK.vtkAbstractMapper3D.

Reimplemented in Kitware.VTK.vtkGraphMapper, Kitware.VTK.vtkGlyph3DMapper, Kitware.VTK.vtkCompositePolyDataMapper, and Kitware.VTK.vtkPolyDataMapper.

override void Kitware.VTK.vtkMapper.GetBounds ( IntPtr  bounds)
virtual

Return bounding box (array of six doubles) of data expressed as (xmin,xmax, ymin,ymax, zmin,zmax).

Reimplemented from Kitware.VTK.vtkAbstractMapper3D.

Reimplemented in Kitware.VTK.vtkGraphMapper, Kitware.VTK.vtkGlyph3DMapper, Kitware.VTK.vtkCompositePolyDataMapper, and Kitware.VTK.vtkPolyDataMapper.

virtual int Kitware.VTK.vtkMapper.GetColorMode ( )
virtual

Control how the scalar data is mapped to colors. By default (ColorModeToDefault), unsigned char scalars are treated as colors, and NOT mapped through the lookup table, while everything else is. Setting ColorModeToMapScalars means that all scalar data will be mapped through the lookup table. (Note that for multi-component scalars, the particular component to use for mapping can be specified using the SelectColorArray() method.)

string Kitware.VTK.vtkMapper.GetColorModeAsString ( )

Return the method of coloring scalar data.

virtual int Kitware.VTK.vtkMapper.GetForceCompileOnly ( )
virtual

Turn on/off flag to control whether data is rendered using immediate mode or note. Immediate mode rendering tends to be slower but it can handle larger datasets. The default value is immediate mode off. If you are having problems rendering a large dataset you might want to consider using immediate more rendering.

static int Kitware.VTK.vtkMapper.GetGlobalImmediateModeRendering ( )
static

Turn on/off flag to control whether data is rendered using immediate mode or note. Immediate mode rendering tends to be slower but it can handle larger datasets. The default value is immediate mode off. If you are having problems rendering a large dataset you might want to consider using immediate more rendering.

virtual int Kitware.VTK.vtkMapper.GetImmediateModeRendering ( )
virtual

Turn on/off flag to control whether data is rendered using immediate mode or note. Immediate mode rendering tends to be slower but it can handle larger datasets. The default value is immediate mode off. If you are having problems rendering a large dataset you might want to consider using immediate more rendering.

vtkDataSet Kitware.VTK.vtkMapper.GetInput ( )

This instance variable is used by vtkLODActor to determine which mapper to use. It is an estimate of the time necessary to render. Setting the render time does not modify the mapper.

Reimplemented in Kitware.VTK.vtkGraphMapper, Kitware.VTK.vtkPolyDataMapper, and Kitware.VTK.vtkDataSetMapper.

Here is the call graph for this function:

vtkDataSet Kitware.VTK.vtkMapper.GetInputAsDataSet ( )

Get the input to this mapper as a vtkDataSet, instead of as a more specialized data type that the subclass may return from GetInput(). This method is provided for use in the wrapper languages, C++ programmers should use GetInput() instead.

Here is the call graph for this function:

virtual int Kitware.VTK.vtkMapper.GetInterpolateScalarsBeforeMapping ( )
virtual

By default, vertex color is used to map colors to a surface. Colors are interpolated after being mapped. This option avoids color interpolation by using a one dimensional texture map for the colors.

vtkScalarsToColors Kitware.VTK.vtkMapper.GetLookupTable ( )

Specify a lookup table for the mapper to use.

Here is the call graph for this function:

override uint Kitware.VTK.vtkMapper.GetMTime ( )
virtual

Overload standard modified time function. If lookup table is modified, then this object is modified as well.

Reimplemented from Kitware.VTK.vtkAbstractMapper.

Reimplemented in Kitware.VTK.vtkGraphMapper, and Kitware.VTK.vtkDataSetMapper.

virtual double Kitware.VTK.vtkMapper.GetRenderTime ( )
virtual

This instance variable is used by vtkLODActor to determine which mapper to use. It is an estimate of the time necessary to render. Setting the render time does not modify the mapper.

static int Kitware.VTK.vtkMapper.GetResolveCoincidentTopology ( )
static

Set/Get a global flag that controls whether coincident topology (e.g., a line on top of a polygon) is shifted to avoid z-buffer resolution (and hence rendering problems). If not off, there are two methods to choose from. PolygonOffset uses graphics systems calls to shift polygons, but does not distinguish vertices and lines from one another. ShiftZBuffer remaps the z-buffer to distinguish vertices, lines, and polygons, but does not always produce acceptable results. If you use the ShiftZBuffer approach, you may also want to set the ResolveCoincidentTopologyZShift value. (Note: not all mappers/graphics systems implement this functionality.)

static int Kitware.VTK.vtkMapper.GetResolveCoincidentTopologyPolygonOffsetFaces ( )
static

Used when ResolveCoincidentTopology is set to PolygonOffset. The polygon offset can be applied either to the solid polygonal faces or the lines/vertices. When set (default), the offset is applied to the faces otherwise it is applied to lines and vertices. This is a global variable.

static void Kitware.VTK.vtkMapper.GetResolveCoincidentTopologyPolygonOffsetParameters ( ref double  factor,
ref double  units 
)
static

Used to set the polygon offset scale factor and units. Used when ResolveCoincidentTopology is set to PolygonOffset. These are global variables.

static double Kitware.VTK.vtkMapper.GetResolveCoincidentTopologyZShift ( )
static

Used to set the z-shift if ResolveCoincidentTopology is set to ShiftZBuffer. This is a global variable.

virtual int Kitware.VTK.vtkMapper.GetScalarMaterialMode ( )
virtual

Set/Get the light-model color mode.

string Kitware.VTK.vtkMapper.GetScalarMaterialModeAsString ( )

Return the light-model color mode.

virtual int Kitware.VTK.vtkMapper.GetScalarMode ( )
virtual

Control how the filter works with scalar point data and cell attribute data. By default (ScalarModeToDefault), the filter will use point data, and if no point data is available, then cell data is used. Alternatively you can explicitly set the filter to use point data (ScalarModeToUsePointData) or cell data (ScalarModeToUseCellData). You can also choose to get the scalars from an array in point field data (ScalarModeToUsePointFieldData) or cell field data (ScalarModeToUseCellFieldData). If scalars are coming from a field data array, you must call SelectColorArray before you call GetColors. When ScalarMode is set to use Field Data (ScalarModeToFieldData), you must call SelectColorArray to choose the field data array to be used to color cells. In this mode, if the poly data has triangle strips, the field data is treated as the celldata for each mini-cell formed by a triangle in the strip rather than the entire strip.

string Kitware.VTK.vtkMapper.GetScalarModeAsString ( )

Return the method for obtaining scalar data.

virtual double [] Kitware.VTK.vtkMapper.GetScalarRange ( )
virtual

Specify range in terms of scalar minimum and maximum (smin,smax). These values are used to map scalars into lookup table. Has no effect when UseLookupTableScalarRange is true.

virtual void Kitware.VTK.vtkMapper.GetScalarRange ( IntPtr  data)
virtual

Specify range in terms of scalar minimum and maximum (smin,smax). These values are used to map scalars into lookup table. Has no effect when UseLookupTableScalarRange is true.

virtual int Kitware.VTK.vtkMapper.GetScalarVisibility ( )
virtual

Turn on/off flag to control whether scalar data is used to color objects.

virtual int Kitware.VTK.vtkMapper.GetStatic ( )
virtual

Turn on/off flag to control whether the mapper's data is static. Static data means that the mapper does not propagate updates down the pipeline, greatly decreasing the time it takes to update many mappers. This should only be used if the data never changes.

virtual bool Kitware.VTK.vtkMapper.GetSupportsSelection ( )
virtual

WARNING: INTERNAL METHOD - NOT INTENDED FOR GENERAL USE DO NOT USE THIS METHOD OUTSIDE OF THE RENDERING PROCESS Used by vtkHardwareSelector to determine if the prop supports hardware selection.

Reimplemented in Kitware.VTK.vtkGlyph3DMapper, and Kitware.VTK.vtkPainterPolyDataMapper.

virtual int Kitware.VTK.vtkMapper.GetUseLookupTableScalarRange ( )
virtual

Control whether the mapper sets the lookuptable range based on its own ScalarRange, or whether it will use the LookupTable ScalarRange regardless of it's own setting. By default the Mapper is allowed to set the LookupTable range, but users who are sharing LookupTables between mappers/actors will probably wish to force the mapper to use the LookupTable unchanged.

static void Kitware.VTK.vtkMapper.GlobalImmediateModeRenderingOff ( )
static

Turn on/off flag to control whether data is rendered using immediate mode or note. Immediate mode rendering tends to be slower but it can handle larger datasets. The default value is immediate mode off. If you are having problems rendering a large dataset you might want to consider using immediate more rendering.

static void Kitware.VTK.vtkMapper.GlobalImmediateModeRenderingOn ( )
static

Turn on/off flag to control whether data is rendered using immediate mode or note. Immediate mode rendering tends to be slower but it can handle larger datasets. The default value is immediate mode off. If you are having problems rendering a large dataset you might want to consider using immediate more rendering.

virtual void Kitware.VTK.vtkMapper.ImmediateModeRenderingOff ( )
virtual

Turn on/off flag to control whether data is rendered using immediate mode or note. Immediate mode rendering tends to be slower but it can handle larger datasets. The default value is immediate mode off. If you are having problems rendering a large dataset you might want to consider using immediate more rendering.

virtual void Kitware.VTK.vtkMapper.ImmediateModeRenderingOn ( )
virtual

Turn on/off flag to control whether data is rendered using immediate mode or note. Immediate mode rendering tends to be slower but it can handle larger datasets. The default value is immediate mode off. If you are having problems rendering a large dataset you might want to consider using immediate more rendering.

virtual void Kitware.VTK.vtkMapper.InterpolateScalarsBeforeMappingOff ( )
virtual

By default, vertex color is used to map colors to a surface. Colors are interpolated after being mapped. This option avoids color interpolation by using a one dimensional texture map for the colors.

virtual void Kitware.VTK.vtkMapper.InterpolateScalarsBeforeMappingOn ( )
virtual

By default, vertex color is used to map colors to a surface. Colors are interpolated after being mapped. This option avoids color interpolation by using a one dimensional texture map for the colors.

override int Kitware.VTK.vtkMapper.IsA ( string  type)
virtual
static new int Kitware.VTK.vtkMapper.IsTypeOf ( string  type)
static
vtkUnsignedCharArray Kitware.VTK.vtkMapper.MapScalars ( double  alpha)

Map the scalars (if there are any scalars and ScalarVisibility is on) through the lookup table, returning an unsigned char RGBA array. This is typically done as part of the rendering process. The alpha parameter allows the blending of the scalars with an additional alpha (typically which comes from a vtkActor, etc.)

Here is the call graph for this function:

new vtkMapper Kitware.VTK.vtkMapper.NewInstance ( )
override void Kitware.VTK.vtkMapper.ReleaseGraphicsResources ( vtkWindow  arg0)
virtual

Release any graphics resources that are being consumed by this mapper. The parameter window could be used to determine which graphic resources to release.

Reimplemented from Kitware.VTK.vtkAbstractMapper.

Reimplemented in Kitware.VTK.vtkGraphMapper, Kitware.VTK.vtkPainterPolyDataMapper, Kitware.VTK.vtkDataSetMapper, Kitware.VTK.vtkCompositePolyDataMapper, Kitware.VTK.vtkOpenGLPolyDataMapper, and Kitware.VTK.vtkOpenGLGlyph3DMapper.

virtual void Kitware.VTK.vtkMapper.Render ( vtkRenderer  ren,
vtkActor  a 
)
virtual

Method initiates the mapping process. Generally sent by the actor as each frame is rendered.

Reimplemented in Kitware.VTK.vtkGraphMapper, Kitware.VTK.vtkGlyph3DMapper, Kitware.VTK.vtkPolyDataMapper, Kitware.VTK.vtkDataSetMapper, Kitware.VTK.vtkCompositePolyDataMapper, and Kitware.VTK.vtkOpenGLGlyph3DMapper.

static new vtkMapper Kitware.VTK.vtkMapper.SafeDownCast ( vtkObjectBase  o)
static
virtual void Kitware.VTK.vtkMapper.ScalarVisibilityOff ( )
virtual

Turn on/off flag to control whether scalar data is used to color objects.

virtual void Kitware.VTK.vtkMapper.ScalarVisibilityOn ( )
virtual

Turn on/off flag to control whether scalar data is used to color objects.

void Kitware.VTK.vtkMapper.SelectColorArray ( int  arrayNum)

When ScalarMode is set to UsePointFieldData or UseCellFieldData, you can specify which array to use for coloring using these methods. The lookup table will decide how to convert vectors to colors.

void Kitware.VTK.vtkMapper.SelectColorArray ( string  arrayName)

When ScalarMode is set to UsePointFieldData or UseCellFieldData, you can specify which array to use for coloring using these methods. The lookup table will decide how to convert vectors to colors.

virtual void Kitware.VTK.vtkMapper.SetColorMode ( int  _arg)
virtual

Control how the scalar data is mapped to colors. By default (ColorModeToDefault), unsigned char scalars are treated as colors, and NOT mapped through the lookup table, while everything else is. Setting ColorModeToMapScalars means that all scalar data will be mapped through the lookup table. (Note that for multi-component scalars, the particular component to use for mapping can be specified using the SelectColorArray() method.)

void Kitware.VTK.vtkMapper.SetColorModeToDefault ( )

Control how the scalar data is mapped to colors. By default (ColorModeToDefault), unsigned char scalars are treated as colors, and NOT mapped through the lookup table, while everything else is. Setting ColorModeToMapScalars means that all scalar data will be mapped through the lookup table. (Note that for multi-component scalars, the particular component to use for mapping can be specified using the SelectColorArray() method.)

void Kitware.VTK.vtkMapper.SetColorModeToMapScalars ( )

Control how the scalar data is mapped to colors. By default (ColorModeToDefault), unsigned char scalars are treated as colors, and NOT mapped through the lookup table, while everything else is. Setting ColorModeToMapScalars means that all scalar data will be mapped through the lookup table. (Note that for multi-component scalars, the particular component to use for mapping can be specified using the SelectColorArray() method.)

void Kitware.VTK.vtkMapper.SetForceCompileOnly ( int  value)

Turn on/off flag to control whether data is rendered using immediate mode or note. Immediate mode rendering tends to be slower but it can handle larger datasets. The default value is immediate mode off. If you are having problems rendering a large dataset you might want to consider using immediate more rendering.

static void Kitware.VTK.vtkMapper.SetGlobalImmediateModeRendering ( int  val)
static

Turn on/off flag to control whether data is rendered using immediate mode or note. Immediate mode rendering tends to be slower but it can handle larger datasets. The default value is immediate mode off. If you are having problems rendering a large dataset you might want to consider using immediate more rendering.

virtual void Kitware.VTK.vtkMapper.SetImmediateModeRendering ( int  _arg)
virtual

Turn on/off flag to control whether data is rendered using immediate mode or note. Immediate mode rendering tends to be slower but it can handle larger datasets. The default value is immediate mode off. If you are having problems rendering a large dataset you might want to consider using immediate more rendering.

virtual void Kitware.VTK.vtkMapper.SetInterpolateScalarsBeforeMapping ( int  _arg)
virtual

By default, vertex color is used to map colors to a surface. Colors are interpolated after being mapped. This option avoids color interpolation by using a one dimensional texture map for the colors.

void Kitware.VTK.vtkMapper.SetLookupTable ( vtkScalarsToColors  lut)

Specify a lookup table for the mapper to use.

void Kitware.VTK.vtkMapper.SetRenderTime ( double  time)

This instance variable is used by vtkLODActor to determine which mapper to use. It is an estimate of the time necessary to render. Setting the render time does not modify the mapper.

static void Kitware.VTK.vtkMapper.SetResolveCoincidentTopology ( int  val)
static

Set/Get a global flag that controls whether coincident topology (e.g., a line on top of a polygon) is shifted to avoid z-buffer resolution (and hence rendering problems). If not off, there are two methods to choose from. PolygonOffset uses graphics systems calls to shift polygons, but does not distinguish vertices and lines from one another. ShiftZBuffer remaps the z-buffer to distinguish vertices, lines, and polygons, but does not always produce acceptable results. If you use the ShiftZBuffer approach, you may also want to set the ResolveCoincidentTopologyZShift value. (Note: not all mappers/graphics systems implement this functionality.)

static void Kitware.VTK.vtkMapper.SetResolveCoincidentTopologyPolygonOffsetFaces ( int  faces)
static

Used when ResolveCoincidentTopology is set to PolygonOffset. The polygon offset can be applied either to the solid polygonal faces or the lines/vertices. When set (default), the offset is applied to the faces otherwise it is applied to lines and vertices. This is a global variable.

static void Kitware.VTK.vtkMapper.SetResolveCoincidentTopologyPolygonOffsetParameters ( double  factor,
double  units 
)
static

Used to set the polygon offset scale factor and units. Used when ResolveCoincidentTopology is set to PolygonOffset. These are global variables.

static void Kitware.VTK.vtkMapper.SetResolveCoincidentTopologyToDefault ( )
static

Set/Get a global flag that controls whether coincident topology (e.g., a line on top of a polygon) is shifted to avoid z-buffer resolution (and hence rendering problems). If not off, there are two methods to choose from. PolygonOffset uses graphics systems calls to shift polygons, but does not distinguish vertices and lines from one another. ShiftZBuffer remaps the z-buffer to distinguish vertices, lines, and polygons, but does not always produce acceptable results. If you use the ShiftZBuffer approach, you may also want to set the ResolveCoincidentTopologyZShift value. (Note: not all mappers/graphics systems implement this functionality.)

static void Kitware.VTK.vtkMapper.SetResolveCoincidentTopologyToOff ( )
static

Set/Get a global flag that controls whether coincident topology (e.g., a line on top of a polygon) is shifted to avoid z-buffer resolution (and hence rendering problems). If not off, there are two methods to choose from. PolygonOffset uses graphics systems calls to shift polygons, but does not distinguish vertices and lines from one another. ShiftZBuffer remaps the z-buffer to distinguish vertices, lines, and polygons, but does not always produce acceptable results. If you use the ShiftZBuffer approach, you may also want to set the ResolveCoincidentTopologyZShift value. (Note: not all mappers/graphics systems implement this functionality.)

static void Kitware.VTK.vtkMapper.SetResolveCoincidentTopologyToPolygonOffset ( )
static

Set/Get a global flag that controls whether coincident topology (e.g., a line on top of a polygon) is shifted to avoid z-buffer resolution (and hence rendering problems). If not off, there are two methods to choose from. PolygonOffset uses graphics systems calls to shift polygons, but does not distinguish vertices and lines from one another. ShiftZBuffer remaps the z-buffer to distinguish vertices, lines, and polygons, but does not always produce acceptable results. If you use the ShiftZBuffer approach, you may also want to set the ResolveCoincidentTopologyZShift value. (Note: not all mappers/graphics systems implement this functionality.)

static void Kitware.VTK.vtkMapper.SetResolveCoincidentTopologyToShiftZBuffer ( )
static

Set/Get a global flag that controls whether coincident topology (e.g., a line on top of a polygon) is shifted to avoid z-buffer resolution (and hence rendering problems). If not off, there are two methods to choose from. PolygonOffset uses graphics systems calls to shift polygons, but does not distinguish vertices and lines from one another. ShiftZBuffer remaps the z-buffer to distinguish vertices, lines, and polygons, but does not always produce acceptable results. If you use the ShiftZBuffer approach, you may also want to set the ResolveCoincidentTopologyZShift value. (Note: not all mappers/graphics systems implement this functionality.)

static void Kitware.VTK.vtkMapper.SetResolveCoincidentTopologyZShift ( double  val)
static

Used to set the z-shift if ResolveCoincidentTopology is set to ShiftZBuffer. This is a global variable.

virtual void Kitware.VTK.vtkMapper.SetScalarMaterialMode ( int  _arg)
virtual

Set/Get the light-model color mode.

void Kitware.VTK.vtkMapper.SetScalarMaterialModeToAmbient ( )

Set/Get the light-model color mode.

void Kitware.VTK.vtkMapper.SetScalarMaterialModeToAmbientAndDiffuse ( )

Set/Get the light-model color mode.

void Kitware.VTK.vtkMapper.SetScalarMaterialModeToDefault ( )

Set/Get the light-model color mode.

void Kitware.VTK.vtkMapper.SetScalarMaterialModeToDiffuse ( )

Set/Get the light-model color mode.

virtual void Kitware.VTK.vtkMapper.SetScalarMode ( int  _arg)
virtual

Control how the filter works with scalar point data and cell attribute data. By default (ScalarModeToDefault), the filter will use point data, and if no point data is available, then cell data is used. Alternatively you can explicitly set the filter to use point data (ScalarModeToUsePointData) or cell data (ScalarModeToUseCellData). You can also choose to get the scalars from an array in point field data (ScalarModeToUsePointFieldData) or cell field data (ScalarModeToUseCellFieldData). If scalars are coming from a field data array, you must call SelectColorArray before you call GetColors. When ScalarMode is set to use Field Data (ScalarModeToFieldData), you must call SelectColorArray to choose the field data array to be used to color cells. In this mode, if the poly data has triangle strips, the field data is treated as the celldata for each mini-cell formed by a triangle in the strip rather than the entire strip.

void Kitware.VTK.vtkMapper.SetScalarModeToDefault ( )

Control how the filter works with scalar point data and cell attribute data. By default (ScalarModeToDefault), the filter will use point data, and if no point data is available, then cell data is used. Alternatively you can explicitly set the filter to use point data (ScalarModeToUsePointData) or cell data (ScalarModeToUseCellData). You can also choose to get the scalars from an array in point field data (ScalarModeToUsePointFieldData) or cell field data (ScalarModeToUseCellFieldData). If scalars are coming from a field data array, you must call SelectColorArray before you call GetColors. When ScalarMode is set to use Field Data (ScalarModeToFieldData), you must call SelectColorArray to choose the field data array to be used to color cells. In this mode, if the poly data has triangle strips, the field data is treated as the celldata for each mini-cell formed by a triangle in the strip rather than the entire strip.

void Kitware.VTK.vtkMapper.SetScalarModeToUseCellData ( )

Control how the filter works with scalar point data and cell attribute data. By default (ScalarModeToDefault), the filter will use point data, and if no point data is available, then cell data is used. Alternatively you can explicitly set the filter to use point data (ScalarModeToUsePointData) or cell data (ScalarModeToUseCellData). You can also choose to get the scalars from an array in point field data (ScalarModeToUsePointFieldData) or cell field data (ScalarModeToUseCellFieldData). If scalars are coming from a field data array, you must call SelectColorArray before you call GetColors. When ScalarMode is set to use Field Data (ScalarModeToFieldData), you must call SelectColorArray to choose the field data array to be used to color cells. In this mode, if the poly data has triangle strips, the field data is treated as the celldata for each mini-cell formed by a triangle in the strip rather than the entire strip.

void Kitware.VTK.vtkMapper.SetScalarModeToUseCellFieldData ( )

Control how the filter works with scalar point data and cell attribute data. By default (ScalarModeToDefault), the filter will use point data, and if no point data is available, then cell data is used. Alternatively you can explicitly set the filter to use point data (ScalarModeToUsePointData) or cell data (ScalarModeToUseCellData). You can also choose to get the scalars from an array in point field data (ScalarModeToUsePointFieldData) or cell field data (ScalarModeToUseCellFieldData). If scalars are coming from a field data array, you must call SelectColorArray before you call GetColors. When ScalarMode is set to use Field Data (ScalarModeToFieldData), you must call SelectColorArray to choose the field data array to be used to color cells. In this mode, if the poly data has triangle strips, the field data is treated as the celldata for each mini-cell formed by a triangle in the strip rather than the entire strip.

void Kitware.VTK.vtkMapper.SetScalarModeToUseFieldData ( )

Control how the filter works with scalar point data and cell attribute data. By default (ScalarModeToDefault), the filter will use point data, and if no point data is available, then cell data is used. Alternatively you can explicitly set the filter to use point data (ScalarModeToUsePointData) or cell data (ScalarModeToUseCellData). You can also choose to get the scalars from an array in point field data (ScalarModeToUsePointFieldData) or cell field data (ScalarModeToUseCellFieldData). If scalars are coming from a field data array, you must call SelectColorArray before you call GetColors. When ScalarMode is set to use Field Data (ScalarModeToFieldData), you must call SelectColorArray to choose the field data array to be used to color cells. In this mode, if the poly data has triangle strips, the field data is treated as the celldata for each mini-cell formed by a triangle in the strip rather than the entire strip.

void Kitware.VTK.vtkMapper.SetScalarModeToUsePointData ( )

Control how the filter works with scalar point data and cell attribute data. By default (ScalarModeToDefault), the filter will use point data, and if no point data is available, then cell data is used. Alternatively you can explicitly set the filter to use point data (ScalarModeToUsePointData) or cell data (ScalarModeToUseCellData). You can also choose to get the scalars from an array in point field data (ScalarModeToUsePointFieldData) or cell field data (ScalarModeToUseCellFieldData). If scalars are coming from a field data array, you must call SelectColorArray before you call GetColors. When ScalarMode is set to use Field Data (ScalarModeToFieldData), you must call SelectColorArray to choose the field data array to be used to color cells. In this mode, if the poly data has triangle strips, the field data is treated as the celldata for each mini-cell formed by a triangle in the strip rather than the entire strip.

void Kitware.VTK.vtkMapper.SetScalarModeToUsePointFieldData ( )

Control how the filter works with scalar point data and cell attribute data. By default (ScalarModeToDefault), the filter will use point data, and if no point data is available, then cell data is used. Alternatively you can explicitly set the filter to use point data (ScalarModeToUsePointData) or cell data (ScalarModeToUseCellData). You can also choose to get the scalars from an array in point field data (ScalarModeToUsePointFieldData) or cell field data (ScalarModeToUseCellFieldData). If scalars are coming from a field data array, you must call SelectColorArray before you call GetColors. When ScalarMode is set to use Field Data (ScalarModeToFieldData), you must call SelectColorArray to choose the field data array to be used to color cells. In this mode, if the poly data has triangle strips, the field data is treated as the celldata for each mini-cell formed by a triangle in the strip rather than the entire strip.

virtual void Kitware.VTK.vtkMapper.SetScalarRange ( double  _arg1,
double  _arg2 
)
virtual

Specify range in terms of scalar minimum and maximum (smin,smax). These values are used to map scalars into lookup table. Has no effect when UseLookupTableScalarRange is true.

void Kitware.VTK.vtkMapper.SetScalarRange ( IntPtr  _arg)

Specify range in terms of scalar minimum and maximum (smin,smax). These values are used to map scalars into lookup table. Has no effect when UseLookupTableScalarRange is true.

virtual void Kitware.VTK.vtkMapper.SetScalarVisibility ( int  _arg)
virtual

Turn on/off flag to control whether scalar data is used to color objects.

virtual void Kitware.VTK.vtkMapper.SetStatic ( int  _arg)
virtual

Turn on/off flag to control whether the mapper's data is static. Static data means that the mapper does not propagate updates down the pipeline, greatly decreasing the time it takes to update many mappers. This should only be used if the data never changes.

virtual void Kitware.VTK.vtkMapper.SetUseLookupTableScalarRange ( int  _arg)
virtual

Control whether the mapper sets the lookuptable range based on its own ScalarRange, or whether it will use the LookupTable ScalarRange regardless of it's own setting. By default the Mapper is allowed to set the LookupTable range, but users who are sharing LookupTables between mappers/actors will probably wish to force the mapper to use the LookupTable unchanged.

new void Kitware.VTK.vtkMapper.ShallowCopy ( vtkAbstractMapper  m)

Make a shallow copy of this mapper.

Reimplemented from Kitware.VTK.vtkAbstractMapper.

Reimplemented in Kitware.VTK.vtkPolyDataMapper.

virtual void Kitware.VTK.vtkMapper.StaticOff ( )
virtual

Turn on/off flag to control whether the mapper's data is static. Static data means that the mapper does not propagate updates down the pipeline, greatly decreasing the time it takes to update many mappers. This should only be used if the data never changes.

virtual void Kitware.VTK.vtkMapper.StaticOn ( )
virtual

Turn on/off flag to control whether the mapper's data is static. Static data means that the mapper does not propagate updates down the pipeline, greatly decreasing the time it takes to update many mappers. This should only be used if the data never changes.

virtual void Kitware.VTK.vtkMapper.UseLookupTableScalarRangeOff ( )
virtual

Control whether the mapper sets the lookuptable range based on its own ScalarRange, or whether it will use the LookupTable ScalarRange regardless of it's own setting. By default the Mapper is allowed to set the LookupTable range, but users who are sharing LookupTables between mappers/actors will probably wish to force the mapper to use the LookupTable unchanged.

virtual void Kitware.VTK.vtkMapper.UseLookupTableScalarRangeOn ( )
virtual

Control whether the mapper sets the lookuptable range based on its own ScalarRange, or whether it will use the LookupTable ScalarRange regardless of it's own setting. By default the Mapper is allowed to set the LookupTable range, but users who are sharing LookupTables between mappers/actors will probably wish to force the mapper to use the LookupTable unchanged.

Member Data Documentation

new readonly string Kitware.VTK.vtkMapper.MRClassNameKey = "9vtkMapper"
static

Automatically generated type registration mechanics.

new const string Kitware.VTK.vtkMapper.MRFullTypeName = "Kitware.VTK.vtkMapper"

Automatically generated type registration mechanics.


The documentation for this class was generated from the following file: