
Apt-Cacher-NG User Manual

Apt-Cacher NG is a caching proxy for software packages which are downloaded by Unix/Linux
system distribution mechanisms from mirror servers accessible via HTTP.

This manual provides an overview of Apt-Cacher-NG's features and a walk through the required
configuration steps for server administrators and users of the proxy.

1

Contents

Chapter 1: Introduction . 4

Chapter 2: Running apt-cacher-ng . 5

Chapter 3: Basic Configuration . 6

3.1 Server Configuration . 6

3.2 Client Configuration . 6

Chapter 4: Advanced Server Configuration 7

4.1 Vocabulary . 7

4.2 Configuration file types . 7

4.3 Repositories and URL mapping 8

4.3.1 Basic use of URL remapping 8

4.3.2 Details of remapping syntax 9

Chapter 5: Security . 11

Chapter 6: Maintenance . 12

6.1 Manual cache cleanup . 12

6.2 Automated cache cleanup . 13

6.3 Distribution release removal . 14

Chapter 7: HOWTOs and FAQ . 15

7.1 Package import . 15

7.2 Cache overview . 16

7.3 Access control and inetd usage 17

7.4 JIGDO usage . 17

7.5 Debugging . 18

7.6 Avoid use of apt-cacher-ng for certain hosts 18

7.7 Avoid caching for certain domains or certain file types 18

7.8 How to make big download series faster 18

2

Chapter 8: Troubleshooting . 19

8.1 Problem: non-interactive expiration action reproducibly aborts 19

8.2 Problem:apt-getfreezes when downloading files 19

8.3 apt-getreports corrupted bzip2 data 20

8.4 Problem: APT client receives a "Cache storage error" 20

8.5 Problem:apt-cacher-ngrefuses to start with "Address already in use" 20

Chapter 9: Known Bugs and Limitations 21

Chapter 10: Contact . 22

3

Chapter 1: Introduction

apt-cacher-ng attempts to achieve the same goals as related proxies - it acts as a proxy which
is used by clients in the local network to share the data that has been downloaded. It monitors
the state of packages and is capable of merging downloads of the same packages from different
locations (real or simulated).

The package reuses many ideas behind the other famous proxy, its predecessor apt-cacher 1.x
(which has been written in Perl). In contrast to apt-cacher, other aspects have been declared as
primary targets during the development of apt-cacher-ng:

• lightweight implementation - allow the use on systems with low memory and processing
resources

• internal (native) threading - avoiding process fork'ing wherever possible, avoiding kludges
for pseudo-thread synchronization, avoiding excessive use of hidden file system features
for internal operations

• real (effective) support of HTTP pipelining, therefore a native client with native stream
control has been developed. The nice side effect is the reduction of resource overhead and
minimization of possible points of failure

• avoiding featurities where they cause too much bloat and the functionality can be provided
by native OS features

• reliable but efficient content merging in the local package pool, avoiding delivering of
wrong data.

As with apt-cacher, explicit tracking of dynamically changed and unchanged files is established,
and the use in non-Debian environment should be supported.

Long story: Not all goals have been achieved. The initial plan of using background databases
to merge any download from any arbitrary location has been dropped because of complexity
and performance considerations, reliable heuristics could not be found either. Instead, a
semi-automated solution has been created which used machine-parseable files with mirror
information, like the one available for Debian mirrors in Debian's CVS repository.

4

http://cvs.debian.org/*checkout*/webwml/english/mirror/Mirrors.masterlist?rev=HEAD&cvsroot=webwml

Chapter 2: Running apt-cacher-ng

Run "build/apt-cacher-ng -c conf" when configured where conf is the configuration directory.
See section 4.2 for details on possible and required contents of this directory.

Most options from the configuration file can also be passed through command line parameters.
Just append them with the same format as in the configuration file but without separating spaces
inside, e.g.

Port:4855

For convenience, the colon can also be replaced with the equals sign and letter case does not
matter, so this is also possible:

port=4855.

5

Chapter 3: Basic Configuration

3.1 Server Configuration
Unlike some rumors on the internet tell people, there should be no need for exhausting
configuration work to just test apt-cacher-ng and run it with default parameters. It's actually
designed to bootstrap its working environment without additional help.

The package setup scripts used by distributions should already prepare working initial settings
for apt-cacher-ng. Check the file/etc/apt-cacher-ng/acng.conffile where most settings are
explained. For the beginning they should not be changed, the only interesting setting present
there is the TCP port. See Advanced Server Configuration for details.

3.2 Client Configuration
From the client side, apt-cacher-ng can be used as drop-in replacement for apt-cacher. The same
rules apply, e.g. Debian/Ubuntu users should EITHER:

• Specify the caching machine as HTTP Proxy for APT, e.g. putting a line like the following
into a file like /etc/apt/apt.conf.d/02proxy:

Acquire::http { Proxy "http://CacheServerIp:3142"; };

OR:

• Replace all mirror hostnames with cachinghost/hostname in sources.list, so

deb http://ftp.uni-kl.de/debian etch main

now would become:

deb http://192.168.0.17/ftp.uni-kl.de/debian etch main

(assuming that CacheServerIp is 192.168.0.17).

Mixing both configuration methods is not recommended and will lead to obscure APT failures
in most cases.

Additionally, leading path component containing "apt-cacher/" or "apt-cacher?/" might be
ignored by the server during the URL processing. This is intended behavior and exists to
maintain backwards compatibility to sources.list entries configured for early versions of Apt-
Cacher (based on CGI technology).

6

Chapter 4: Advanced Server Configuration

4.1 Vocabulary
This chapter introduces some terminology which is needed to understand the functionality
of apt-cacher-ng; it's recommended to understand it before continuing with the advanced
configuration.

• "Repository": the internal identifier of a local cache directory. Can be the hostname of an
actual mirror or an arbitrary name for a ring of mirror servers, in which case you need to
provide a backend definition (see below). When chosen once, the repository string should
not be changed afterwards or the data in the cache might become inaccessible to the client.

• "Backend": a text file consisting of a list of mirror URLs, one per line (a more complex
RFC822-like format is also supported). Used for URL remapping; see section 4.3.

• "Volatile files": nothing to do with debian-volatile, volatile here only means that they are
volatile, i.e. their contents are expected to be regularly changed on the server. For example,
metadata pertaining to package files stored in a remote repository is classified as 'volatile'.
This includes Packages, Sources, Release, Pdiff and similar files. Program messages
sometimes refer to them as 'index files'.

• "Package files": files that contain software packages and other "solid" data: DEBs, source
files for their creation (.tar.gz, .diff, .dsc), various metadata which is not subject to change
after first appearance on the server.

• "Configuration line": one single line in the configuration file. Some examples in this chapter
may contain wrapped lines but should be stored as a single line in the configuration.

4.2 Configuration file types
By default, the /etc/apt-cacher-ng directory contains all config files, HTML page templates,
the stylesheet and other text-based support files used by apt-cacher-ng. The contents may vary
depending on the installation of apt-cacher-ng, refer to the package documentation for Linux
Distribution packages.

The main configuration files are located in one single directory. Three types files are recognized
(by suffix) and interpreted by the following schema.

*.conf files are assumed to contain configuration directives in the form of "key: value" pairs.
The package comes with a commented example configuration file. apt-cacher-ng reads all files
matching *.conf in alphabetical order and merges the contents. For options documentation, see
commented example file shipped with apt-cacher-ng (conf/ directory in original source).

Lists of remote package repositories (i.e. mirrors) can be specified in one of two formats:

7

• simple text files with one URL per line (the URL should point to the base directory of
the repository, e.g. "http://ftp.de.debian.org/debian/"). An URL must start with http:// and
should end with a slash.

• in an RFC822-like format, with lines like 'Site: <hostname>' and 'Archive-http:
/base/directory/of/repository/'. Optional fields are also used in this remapping descriptions
to add more possible variants (Alias, Aliases, X-Archive-http:) of the URLs to the lookup
list.

Apt-cacher-ng autodetects the format of the list.

4.3 Repositories and URL mapping
IMPORTANT: it should be clear from the beginning that the URL remapping is an optional
feature. You do not have to use it, but you can. It is not a strong prerequisite for apt-cacher-
ng's work and in trouble, this feature can be disabled for debugging purposes. On the other
hand, it's also possible to forbid users to download from non-remapped locations using the
ForceManaged option.

4.3.1 Basic use of URL remapping

URL remapping has several uses. First, it allows your apt-cacher-ng based proxy to
masquerade as a Debian or Ubuntu mirror; it can be made to appear to contain
the same directory structure and files the client would find on a real mirror.
Instead of referencing a real mirror, the client's sources.list file would contain a line
like deb http://name.of.proxy.host/debian stable main . Your backend
definition in apt-cacher-ng's configuration determines which actual Debian mirror will be used
to fetch the files.

This keeps the client configuration clean, simple and straightforward. Without URL
remapping, the sources.list file on the client would have to read something like
deb http://name.of.proxy.host/ftp.de.debian.org/debian stable main
or alternatively additional setting of HTTP proxy for APT would be required. Note that,
depending on the remapping configuration, it is possible that apt-cacher-ng will actually use a
mirror other than the one requested by the client (see below).

A second use is obscuring the real location of a repository from your clients. This allows you
to change the real location easily, without having to modify the configuration of all clients; you
just have to edit the backend configuration in one single place.

What happens behind the scenes can be demonstrated in few examples. In all examples below,
fetching fromhttp://proxy.host/some-urlis the same as fetching fromhttp://some-urlhaving
APT-Configuration with proxy-host as HTTP proxy. The exact meaning of the configuration
directive(s) is explained below.

Example 1, no remapping is used:

When a client asks forhttp://proxy.host/ftp.de.debian.org/debian/something, apt-cacher-ng
fetcheshttp://ftp.de.debian.org/debian/something.

Example 2:

Remap-
debrep: ftp.de.debian.org/debian ftp.at.debian.org/debian

8

This is a simple case. When a client asks for
http://proxy.host/ftp.de.debian.org/debian/something , apt-cacher-ng
fetches http://ftp.de.debian.org/debian/something . When another client
asks forhttp://proxy.host/ftp.at.debian.org/debian/something (i.e. the
same "something" from another mirror) then the file is delivered from the local cache (if cached,
otherwise it would be fetched fromftp.at.debian.org). Which means, apt-cacher-ng
uses the file which was originally downloaded from another mirror; they are considered equal
as advised by the Remap-... directive above.

Example(s) 3, slightly more complex:

Remap-ubuntu: /ubuntu ; http://us.archive.ubuntu.com/ubuntu
Remap-medibuntu: /medibuntu ; http://packages.medibuntu.org

These two examples specify trivial mappings. Whenever
a client asks for http://proxy.host/ubuntu/foo , apt-cacher-
ng will retreive http://us.archive.ubuntu.com/ubuntu/foo . When a
client wants http://proxy.host/medibuntu/bar , apt-cacher-ng fetches
http://packages.medibuntu.org/bar . This is still relatively simple.

This game can be continued: adding a path before semicolon adds more URL variants "visible"
by the client (see Example 2), and it's also possible to add multiple backend URLs (after
semicolon). When multiple backends are set, they are probed in the specified order until the
download succeeds.

Side note: "success" means a started download or a non-critical failure in this context, i.e. a "404
File not found" status is not a critical failure, since APT (client) sometimes looks remote file's
existence and reacts to such status response accordingly.

4.3.2 Details of remapping syntax

A "Remap-" line contains three pieces of information:

1. A "repository name": unique internal identifier for the remapping ruleset specified by the line;
in the examples above, "ubuntu" and "medibuntu". These identifiers have no meaning; we could
just as well have chosen "blarg" and "deedledum". Restrictions: the identifier must be valid as a
filename; it mustn't begin with an underscore; and it mustn't contain whitespace. It should also
not be "apt-cacher" for historical reasons.

This is the part of the line between "Remap-" and the first colon (':').

2. A list of path (first URL parts) to apply remapping to. This is the part of the line between
the first colon and the first semicolon (';'). The simple way is specifying the URL paths directly,
separated by spaces. To keep the configuration line short with more than few mirrors, they can
be listed in a separate file and this list file can be specified in the Remap line instead of the URL
path list. I.e. you can use "file:filename" to read a list of pathnames from "filename". Filename
can be absolute, or relative to the configuration directory. You can mix files and literal pathnames
in the list. Pathnames mustn't contain wildcards, but "file:" specifications may. apt-cacher-ng
can decompress .gz and .bz2 files. A leading "http://" in pathnames is replaced by a single "/".

3. A list of backend servers to fetch the files from, whenever clients request a file from a
remapped path. Backend lists are specified the same way as path lists.

Complex example:

9

Remap-
debrep: file:deb_mirror*.gz /debian ; file:backends_debian

This causes apt-cacher-ng to read a list of debian mirrors from all files matching
"deb_mirror*.gz" and construct a list of pathnames consisting of entries like
/ftp.de.debian.org/debian /ftp.kfki.hu/linux/debian and so on. The last element of the list will
be simply /debian. All these paths will be remapped to paths read from backends_debian,
which can contain the base URL of a single Debian mirror, or several URLs, one per line. The
same RFC822-like format deb_mirrors.gz is supplied in is also supported, so you could just
make backends_debian a subset of deb_mirrors.gz; however the use of good local mirrors is
recommended.

Client sources.list files could specify either of the following and still actually use the mirrors
from backends_debian:

• deb http://proxy.host/arbitrary.official.debian.mirror/basepath
stable main

• deb http://proxy.host/debian stable main

• deb http://arbitrary.official.debian.mirror/basepath stable main
(with APT configuration for HTTP proxy, see section 3.2).

Side notes:

• Multiple "Remap-samename" directives are possible (sharing the same repository key). In
this case their contents are merged.

• If no repository is specified, the local storage space is derived from the request URL. If
no backend is specified then the internal download uses the site in the request URL to
download from. If one or multiple backends are specified then the remote site and real
location are calculated from the backend description.

• Use of predefined repositories is recommended. Large remapping lists (for many popular
Debian mirrors) are supported quite efficiently; assigning them all into the same repository
increases the probability of sharing the data between users who where going to use different
mirrors. The backends list can be customized to ensure that few locally best reachable
mirrors are used to download from.

10

Chapter 5: Security

Like many data storing daemons with predictable filenames, apt-cacher-ng is vulnerable to
symlink attacks and similar malicious actions. Therefore, the user must make sure that the cache
and log directories are writable only to the user account under which apt-cacher-ng is executed
on.

As to the program internal security, apt-cacher-ng has been developed to care about a certain
level of attacks from internal users as well as from malicious outside hosts. However, no
guarantees can be made about the security of the program. It's recommended to run apt-cacher-
ng under a system account which has no access to any system files outside of the cache and log
directories. Refer to the manuals of the administration utilities of your distribution (like start-
stop-daemon) to created the required configuration.

If relaxed permissions are required, e.g. to make files group-writeable, this can be established
through the appropriate use umask command in the startup scripts of apt-cacher-ng (see
/etc/default/apt-cacher-ng , for example) and the sticky bit on the cache directories
(seechmod(1) manpage for details).

11

Chapter 6: Maintenance

There are few optional tasks that need to be executed by the administrator from time to time or
during the initial configuration.

6.1 Manual cache cleanup
If a package is no longer downloadable by APT clients then its files are also not referenced in
any volatile (index) file and can be removed. This rule also applies to most volatile files at the
distribution level. I.e. the Release file references some Packages and Sources files or Diff-Index
file, and those do reference most other non-volatile files (binary packages, source packages,
index diffs, ...).

To run this cleanup action manually visit the report page in a browser and trigger theExpiration
operation there.

There are different flags configuring the parameters of this tracking described below. Usually
just the filename is sufficient to consider a file in the cache as a valid (downloadable) file. This
is ok in most cases but sometimes leads to false positives, i.e. when another repository in the
cache refers to a file with the same name but the reference to the original location is gone. On
the other hand there can be cases where the assignment to different repositories happened by
mistake and administrator would like to merge repositories later on.

For most files the checksum values are also provided in the index files and so the file contents
can be validated as well. This requires reading of the whole cache archive to generate local
checksums. It should also not be done when apt-cacher-ng is being used (file locking is not used
here).

Usually it's necessary to bring various index files (Release,Sources,Packages,Index) in sync
with the repository. This is necessary because apt works around the whole file download by
fetching small patches for the original file, and this mode of operation is not supported yet by
apt-cacher-ng (and might still be unreliable). When this synchronization fails, the index files
might be incomplete or obsolete or damaged, and they might no longer contain references to
some files in the cache. Abortion of the cleanup process is advisable in this case.

There is also a precaution mechanism designed to prevent the destruction of cache contents
when some volatile index files have been lost temporarily. The results of cache examination are
stored in a list with the date when the particular files became orphaned. The removals are only
executed after few days (configurable, see configuration file) unless they are removed from this
list in the meantime.

Parameters ofExpiration:

Stop cleanup on errors during index update step

Index files update is done first, on errors the expiration will be interrupted.

12

Validate by file name AND file directory

This option can be used to remove distribution stages. Example: to remove "oldstable" one
just needs to delete the "Release" files in the cache and runExpirationwith this option two
times. There are some issues with this mode operation, see above for details.

Validate by file name AND file contents (through checksum)

Checking file contents where possible, also attempt to detect incorrect file size information
in the cached metadata. Note: the check results are stored only once, future calls without this
option can overwrite the results again. Use action buttons (see below) to delete corrupted
files after the scan.

Force the download of index files

Sometimes it may be needed to redownload all index files, explicitly replacing the cached
versions. This flag enables this behaviour.

Purge unreferenced files after scan

Avoid the use of the orphan list and delete files instead. This option is dangerous and should
not be used unless when absolutely no mistakes/problems can happen. Instead, it's possible
to view the orphan list later and delete then (see below).

More verbosity

Shows more information, e.g. each scanned file when used with some of the other options.
This might result in a very large HTML page, making the watching HTML browser very
slow.

In additional to the default scan run, there are some "Direct Action" buttons in the Web frontend.
It's possible to see the temporary list of files that have been identified as orphaned (unreferenced),
and it's possible to delete all files from that list immediately. To be used carefully!

6.2 Automated cache cleanup
A script calledexpire-caller.pl is shipped with the package. This script effectively
implements a HTTP client which operates like a human would do when running the
expiration manually (see above). It can also extract the operator password and unix socket
file path from the local configuration file. On Debian installations it is called by the file
/etc/cron.daily/apt-cacher-ng so it should run automatically as dailycron task.
The results are usually not reported unless an error occurs, in which case some hints are written
to the standard error output (i.e. sent in cron mails).

The operator script can take some options from the environment, also see the cron script for
details:

ACNGIP=10.0.1.3

The network address for remote connection may be guessed incorrectly by the operator
script. This variable can specify an explicit target to connect to, e.g. the same IP as the
one used by the clients (unless this network connection is somehow restricted in the local
setup).

13

HOSTNAME=localOrPublicName

When an error occurs, the operator script most likely adds an URL to be opened for further
investigation. The host name of in this URL can be customized, i.e. can be set to a public
domain name representing the server as accessible from the administrator's machine.

6.3 Distribution release removal
Sometimes it's needed to remove all files from a distribution, i.e. when a new release became
Stable and older package files are still lying around. In perfect conditions the reference tracking
described above should take care of it and remove them soon.

However, this solution will fail if the release files are still available on the server AND apt-
cacher-ng learned their real location (i.e. the code name instead of not the release state name)
and so they are refreshed during regular expiration.

After all, if the old release is no longer used by local cache users then the extra disk usage
becomes a problem. This problem will go away after many months when the old release files
are finally deleted on the servers, then the package expiration will start complaining for some
days (the expiration delay) and only then the finally unreferenced files will be removed.

To speed up this process, the local administrator can remove the traces of the old distribution
release from the archive. Either the top-level "Release" files, or even the whole index file trees
relevant for certain releases.

To make this task easier, a "brutal" script called distkill.pl is shipped with apt-cacher-ng. It runs
interactively, it scans the package directory and presents an overview of assumed index file trees,
providing the option to remove some immediately. The script should be used with extreme care!
See section 7.2 for example of its output.

14

Chapter 7: HOWTOs and FAQ

7.1 Package import
Already existing packages can be imported into apt-cacher-ng's cache pool instead of
downloading them. There are some restrictions:

1. Don't try to import incomplete files. They will be refused since their contents cannot be
checked against the archive metadata.

2. If possible, don't import symbolic links. Even if doing so, they should not point to other
files inside of the cache and especially not to other files under the _import directory.

HOWTO:

1. Make sure that apt-cacher-ng has valid index files in the cache. This is the tricky part. To
get them right, a client needs to download them through apt-cacher-ng once. Therefore:

1. Configure the server and one client before doing the import. See above for instructions.

2. Run "apt-get update" on client(s) once to teach ACNG about remote locations of
(volatile) index files. In some cases this is not sufficient. See the note on APT below
for a workaround.

2. Store copies of your .debs, .orig.tar.gz, ... somewhere in the "_import" subdirectory in the
cache, ie. in /var/cache/apt-cacher/_import/. The files may be links or symlinks, does not
matter. When done, apt-cacher will move those files to its own internal locations. Example:

cd /var/cache
mkdir apt-cacher-ng/_import
cp -laf apt-proxy apt-cacher /var/cache/apt-cacher-ng/_import
chown -R apt-cacher-ng apt-cacher-ng/_import

3. Visit the report page and trigger the import action there. Check the results, look for (red)
error messages.

4. Check the _import directory again. All files that could be identified as referenced by archive
metadata should no longer be there if they have been successfully moved. If some files have
been left behind, check whether the client can use them ("apt-cache show" and checking
checksums with md5sum/sha1sum tools). If yes, then repeat the procedure and be more
careful in step 1. If that doesn't work, enable verbose output in the web interface and watch
out for error messages.

NOTE: APT is pretty efficient on avoiding unneccessary downloads which can make a proxy
blind to some relevant files. ACNG makes some attempts to guess the remote locations of missed

15

(not downloaded) files but these heuristics may fail, especially on non-Debian systems. When
some files are permanently ignored, check the process output for messages about the update of
Packages/Sources files. When some relevant package sources are missing there, there is a brute-
force method to force their download to the client (for clients with Debian only). To do that,
run:

rm /var/cache/apt/*cache.bin
rm /var/lib/apt/lists/*Packages
rm /var/lib/apt/lists/*Sources

on the client to purge APT's internal cache, and then rerun "apt-get update" there.

7.2 Cache overview
To get a basic overview of the cache contents, the distkill.pl script may be used. See section 6.3
for details and warnings.

/usr/lib/apt-cacher-ng/distkill.pl
Scanning /var/cache/apt-cacher-ng, please wait...
Found distributions:
1. testing (6 index files)
2. sid (63 index files)
3. etch-unikl (30 index files)
4. etch (30 index files)
5. experimental (505 index files)
6. lenny (57 index files)
7. unstable (918 index files)
8. stable (10 index files)

WARNING: The removal action would wipe out whole directories containing
 index files. Select d to see detailed list.

Which distribution to remove? (Number, 0 to exit, d for details): d

Directories to remove:
 1. testing:
 /var/cache/apt-cacher-ng/debrep/dists/testing
 2. sid:
 /var/cache/apt-cacher-ng/localstuff/dists/sid
 /var/cache/apt-cacher-ng/debrep/dists/sid
 4. etch:
 /var/cache/apt-cacher-ng/ftp.debian-unofficial.org/debian/dists/etch
 5. experimental:
 /var/cache/apt-cacher-ng/debrep/dists/experimental
 6. lenny:
 /var/cache/apt-cacher-ng/security.debian.org/dists/lenny
 /var/cache/apt-cacher-ng/debrep/dists/lenny
 7. unstable:
 /var/cache/apt-cacher-ng/debrep/dists/unstable
 /var/cache/apt-cacher-ng/localstuff/debian/dists/unstable
 8. stable:

16

 /var/cache/apt-cacher-ng/debrep/dists/stable
Found distributions:

WARNING: The removal action would wipe out whole directories containing
 index files. Select d to see detailed list.

7.3 Access control and inetd usage
Filtering by client IP or hostname is not supported directly. However, an inetd daemon is shipped
with the package which makes the use of tcpd possible. Installation is done in following steps:

1. compile the inetd bridge tool "in.acng", if not already done (check/usr/lib/apt-
cacher-ng).

2. Edit apt-cacher-ng's configuration (acng.conf, for example), and set a path for a new file in a
writable directory, like this:

SocketPath:/var/run/apt-cacher-ng/socket

3. Edit /etc/inetd.conf and add following line with appropriate path names and TCP port:

3143 stream tcp nowait user /usr/sbin/tcpd
 /usr/local/sbin/in.acng /var/run/apt-cacher-ng/socket

4. Edit hosts.allow and other files to configure ACLs for port 3143. See tcpd(8) and related
manpages for further details.

5. Configure clients to use the alternative port (3143 in the example above).

7.4 JIGDO usage
It's possible to use apt-cacher-ng source with the jigdo-lite utility. There are some limitations,
though:

• since many mirrors do not distribute the jigdo files (or even nothing from
cdimage.debian.org at all), there is a high chance to be redirected to a such mirror when
using the backend-mapped configuration. I.e. when user follows the official documentation
and edits wgetOpts in the jigdo configuration, it will fail in many cases.

• apt-cacher-ng does not support .template files properly. They might be cached but will be
expired (removed from cache), sooner or later.

But it's possible to feed jigdo-lite with the package contents from your mirror. To do that, first
start jigdo-lite as usual, something like:

jigdo-lite http://cdimage.debian.org/.../...-DVD-1.jigdo

When asked about Debian mirror, enter something like:

http://proxy.host:3142/ftp.de.debian.org/debian/

i.e. construct the same URL as present in usual apt-cacher-ng's user's sources.list.

That's all, jigdo-lite will fetch the package files using apt-cacher-ng proxy.

17

7.5 Debugging
Preliminary meanings of Debug option settings are:

• 0: No debug printing

• 1: Log file write buffers are flushed faster

• 2: extra information appears within usual transfer log

• 3 and 4: limited debug information is written to apt-cacher.err

• 5: much more debug information written to apt-cacher.err (requires a special debug binary,
see section 8.2)

• 11: like 5 but all Debug marks are printed to the log, including anonymous marks for code
flow tracking.

Getting HTTP headers from apt-get works like this: apt-get update -o
Debug::Acquire::Http=true

7.6 Avoid use of apt-cacher-ng for certain hosts
Sometimes clients might need to access some remote side directly to do some non-file-transfer
oriented work but still passing the data through configured apt-cacher-ng proxy. Such remote
hosts can be marked for direct access in apt configuration, e.g. in/etc/apt/apt.conf:

Acquire::HTTP::Proxy::archive.example.org "DIRECT";
//or Acquire::HTTP::Proxy::archive.example.org "other.proxy:port"

7.7 Avoid caching for certain domains or certain file types
Sometimes clients to download through apt-cacher-ng but the data shall not be stored on the
harddisk of the server. To get it, use the DontCache directive (see examples for details) to define
such files.

7.8 How to make big download series faster
Symptom: A common situation is a periodic download of hundreds of files through apt-cacher-
ng where just a half is present in the cache. Although caching works fine, there are visible delays
on some files during the download.

Possible cause and relief: the download from the real mirror gets interrupted while apt-cacher-
ng delivers a set of files from the internal cache. While the connection is suspended, it times
out and needs to be recreated when a miss occurs, i.e. apt-cacher-ng has to fetch more from the
remote mirror. A workaround to this behaviour is simple, provided that the remote mirror can
handle long request queues: set the pipelining depth to a very high value in apt.conf file or one
of its replacement files in /etc/apt/apt.conf.d/. With something like:

Acquire::http { Pipeline-Depth "200"; }

there is a higher chance to get the server connection "preheated" before a stall occurs.

18

Chapter 8: Troubleshooting

8.1 Problem: non-interactive expiration action reproducibly
aborts
A quick investigation of action logs should help identifying the problem. A typical one is a
mirror listed somewhere which is not reachable when expiration runs.

Unfortunately there is no simple and safe way to solve this. One method is setting the
ExAbortOnProblems configuration variable, but this can destroy the whole cache if a bigger
problem with index file occurs and this state remains unnoticed for many days until ExTreshold
period (see configuration) is over.

Another way is listing the index files of the faulty mirrors to a special file. It needs to be stored as
"ignore_list" in the configuration directory and store one path name per line with paths relative
to the cache directory, as seen in the error messages.

8.2 Problem: apt-get freezes when downloading files
Solution: First, check:

• Free disk space and inode usage ("df", "df -i")

• Internet connection to the remote sites (browse them via HTTP, e.g. visiting
http://ftp.your.mirror)

If nothing helps then you may have hit a spooky problem which is hard to track down. If you
like, help the author on problem identification. To do that, do:

 su -
 # enter root password
 cd /tmp
 apt-get source apt-cacher-ng
 apt-get build-dep apt-cacher-ng
 cd apt-cacher-ng-*
 make acng DEBUG=1
 /etc/init.d/apt-cacher-ng stop
 ./apt-cacher-ng -c /etc/apt-cacher-ng logdir=/tmp foreground=1 debug=6
 # (let apt-get run now, on timeouts just wait >> 20 seconds)
 # stop the daemon with Ctrl-C
 /etc/init.d/apt-cacher-ng start
 # compress /tmp/apt-cacher.err and send it to author
 chown -R apt-cacher-ng:apt-cacher-ng /var/cache/apt-cacher-ng

The value of debug can be varied to have different verbosity (see section 7.5 for more information
about Debug levels). 11 is recommended for really weird problems.

19

8.3 apt-get reports corrupted bzip2 data
Symptoms: apt-get fails to run through "update" no matter what you do. And you may have get
a message like this one.

99% [6 Packages bzip2 0] [Waiting for headers] [Waiting for headers]
bzip2: Data integrity error when decompressing.
 Input file = (stdin), output file = (stdout)

It is possible that the compressed file(s) have become corrupted.
You can use the -tvv option to test integrity of such files.

You can use the `bzip2recover' program to attempt to recover
data from undamaged sections of corrupted files.

Err http://debian.netcologne.de unstable/main Packages
 Sub-process bzip2 returned an error code (2)

• This might be one of Apt's problem with insufficient handling of errors, i.e. passing
incomplete files to bzip2 on premature connection termination. Retry the update and it
might work.

• Another issue is more severe: old versions of apt-cacher-ng had a bug which could cause
data corruption while resuming downloads however this problem appears only in unusual
conditions. To make sure there are no broken files in your repository, run the Expiration
task with content verification enabled, and also "immediate deletion" (or delete later after
checking the list). See section 6.1 for details.

8.4 Problem: APT client receives a "Cache storage error"
Examine the last entries in the apt-cacher.err file in the log directory. Most likely it's caused by
wrong permissions of some directory in the cache folder where new files/directories need to be
created, or by insufficient disk space.

8.5 Problem: apt-cacher-ng refuses to start with "Address
already in use"
Another service is already listening on the port which apt-cacher-ng is configured to use. This
might be the apt-cacher daemon which used the same port number by default. To identify the
daemon behind that process, use the fuser utility, executing it as root for IPv4 and IPv6 protocol
versions. Example:

fuser -4 -v -n tcp 3142
fuser -6 -v -n tcp 3142
 USER PID ACCESS COMMAND
3142/tcp: xwwwfsd 17914 F.... xwwwfsd

(where 3142 is the port number from the apt-cacher-ng configuration file). To resolve the
collision, reconfigure the other daemon or apt-cacher-ng to use another free port (and reconfigure
the clients to use the new apt-cacher-ng port).

20

Chapter 9: Known Bugs and Limitations

• Versions between 0.2.6 and 0.3.3 created broken X-Original-Source URLs in the .head files

• Only HTTP POST and GET command are supported properly. POST is limited to the calls
made by apt-listbugs and might garble some requests.

• HTTP redirection is not supported yet

• Transparent proxy support not implemented yet

• See TODO file in apt-cacher-ng source for various other notes

• "Code 520824" (see below)

Few versions of apt-cacher-ng did loose some information about the original source of
downloaded files. This has been unnoticed for many months, because the path resolution
algorithm tries to use a file path components go guess the original URL, or guess the cache
repository and then download from using this repository (backends definitions).

The good news is that the missing information is completed automatically when a file is
redownloaded once (or resumed) through apt-cacher-ng. Static package files are usually not
redownloaded, but the missing information is not relevant for them.

The bad news is that in some cases this might become a problem, particularly when an
expiration/import tasks tries to refresh the index file which is stored inside of a (former)
repository tree and the administrator has removed the backends definitions for this repository.
When ACNG runs out of possible sources it reports "Code 520824" and refers to this text.
However, the detection of this situation is still not perfect and in rare cases it's possible that
messages about failed resolution of some hostname (identical with former cache repository
name) will appear.

21

Chapter 10: Contact

The planned features are listed in the file TODO. Don't hesitate to contact me if you really need
something not found there and you can explain the severity of your request.

Please report any bugs found in apt-cacher (which are not obviously the complementary of
missing features, see above ;-).

22

	Apt-Cacher-NG User Manual
	Contents
	Chapter 1: Introduction
	Chapter 2: Running apt-cacher-ng
	Chapter 3: Basic Configuration
	3.1 Server Configuration
	3.2 Client Configuration

	Chapter 4: Advanced Server Configuration
	4.1 Vocabulary
	4.2 Configuration file types
	4.3 Repositories and URL mapping
	4.3.1 Basic use of URL remapping
	4.3.2 Details of remapping syntax

	Chapter 5: Security
	Chapter 6: Maintenance
	6.1 Manual cache cleanup
	6.2 Automated cache cleanup
	6.3 Distribution release removal

	Chapter 7: HOWTOs and FAQ
	7.1 Package import
	7.2 Cache overview
	7.3 Access control and inetd usage
	7.4 JIGDO usage
	7.5 Debugging
	7.6 Avoid use of apt-cacher-ng for certain hosts
	7.7 Avoid caching for certain domains or certain file types
	7.8 How to make big download series faster

	Chapter 8: Troubleshooting
	8.1 Problem: non-interactive expiration action reproducibly aborts
	8.2 Problem: _apt-get_ freezes when downloading files
	8.3 _apt-get_ reports corrupted bzip2 data
	8.4 Problem: APT client receives a "Cache storage error"
	8.5 Problem: _apt-cacher-ng_ refuses to start with "Address already in use"

	Chapter 9: Known Bugs and Limitations
	Chapter 10: Contact

