next up previous contents
Next: Local Function ch_residual_2d() Up: Functions Previous: Local Function ch_psidoubleprime()   Contents


Local Function ch_psiprime()

This calculates the derivative of homogeneous free energy with respect to concentration, which is a component of the chemical potential. It currently uses

\begin{displaymath}\Psi' = C(1-C)\left(\frac{1}{2}+m-C\right)\end{displaymath}

which gives (meta)stable equilibria at $C=0$ and 1 and an unstable equilibrium at $C=\frac{1}{2}+m$; if $m>0$ then the 0 phase is stable and vice versa.

static inline PetscScalar ch_psiprime ( PetscScalar C, PetscScalar mparam )


\begin{cxrefarglist}
\cxrefargitem{PetscScalar C} The concentration.
\cxrefargitem{PetscScalar mparam} The model parameter
$m$.
\par\end{cxrefarglist}

inline PetscScalar ch_psiprime It returns the derivative itself.



root 2002-06-18