
Tntdb

Author: Tommi Mäkitalo

Introduction..1
Connecting..1
Execute query...2
Selecting data..2
Prepared statements..3
Working with cursors...4
Transactions..4
Connectionpool...5
Statementcache...5

Introduction
Tntdb is a library for simple databaseaccess. There are 2 layers for access – a databaseindipendent
layer and a databasedriver.

The databaseindipendent layer offers easy to use methods for working with the database and also
greatly simplifies resource-management. The classes hold reference-counted pointers to the actual
implementation. They are copyable and assignable. The user can use the classes just like simple
values. The resources they reference are freed, when the last reference is deleted. This happens
normally just by leaving the scope. There is normally no reason to instantiate them dynamically on
the heap.

The driver-layer contains the actual implementation, which does the work. These classes are
database-dependend. The user normally doesn't need to deal with this.

Connecting
A connection is represented by the class tntdb::Connection. Tntdb offers a simple function, which
connects to the database: tntdb::connect. This expects a parameter of type std::string, which is the
database-url. The database-url consists of the drivername and a databasedependend part divided by
a colon.

Example:

#include <tntdb/connection.h>
#include <tntdb/connect.h>
int main(int argc, char* argv)
{
 tntdb::Connection conn = tntdb::connect(„sqlite:mydb.db“);
}

The example above loads the sqlite-driver-library and opens a connection to the databasefile
„mydb.db“. At the end of the program the class tntdb::Connection goes out of scope, which closes
the connection automatically.

When the database could not be opened a exception is thrown. In the above example it is
unhandled, which makes the program to abort. This is not so nice, so we add exceptionhandling in
the second example:

#include <tntdb/connection.h>
#include <tntdb/connect.h>
int main(int argc, char* argv)
{
 try
 {
 tntdb::Connection conn = tntdb::connect(„postgresql:dbname=db“);
 }
 catch (const std::exception& e)
 {
 std::cerr << e.what() << std::endl;
 }
}

This is a complete example, which just checks, if the database is accessible.

Execute query
To execute a query without selecting data tntdb::Connection has a method execute. It expects a
std::string with a sql-statement, which does not return data. It returns the number of affected rows.

Example:

#include <tntdb/connection.h>
#include <tntdb/connect.h>
int main(int argc, char* argv)
{
 try
 {
 tntdb::Connection conn = tntdb::connect(„postgresql:dbname=db“);
 conn.execute(
 „create table t1(col1 int not null primary key,“
 „ col2 int not null)“);
 conn.execute(„insert into t1 values(1, 5)“);
 unsigned n = conn.execute(„update t1 set col1 = col1 + 1“);
 std::cout << n << „ rows updated“ << std::endl;
 }
 catch (const std::exception& e)
 {
 std::cerr << e.what() << std::endl;
 }
}

Selecting data
A database is not just for storing data, but it also need to return the data. Tntdb offers several ways
to read the data from the database. The most general is the method tntdb::Connection::select(),
which expects a query and returns a object of class tntdb::Result.

tntdb::Result is a collection of rows. Rows are represented by the class tntdb::Row and these rows
are also collections of type tntdb::Value. Both collections (Result and Row) can be accessed with a
iterator or through a index. The Value-class offeres methods for returning the data in different types.
Tntdb does not tell, which type the column is. Value just does its best to convert the data to the
requested type. The User has to know, which data the column holds.

Often there are statements, which return exactly one row or only a single value. For convenience
tntdb::Connection offers the methods selectRow and selectValue. The former returns the first row
of a query and the latter the first value of the first row. Both throw a exception of type
tntdb::NotFound, if the query returns no rows at all.

A tntdb::Value explicit get-methods and implicit converter-operators to access the value.

Example:

#include <tntdb/result.h>
#include <tntdb/row.h>
#include <tntdb/value.h>

void someFunc(tntdb::Connection conn)
{
 tntdb::Result result = conn.select(„select col1, col2 from table“);
 for (tntdb::Result::const_iterator it = result.begin();
 it != result.end(); ++it)
 {
 tntdb::Row row = *it;
 std::cout << „col1=“ << row[0] << „\tcol2=“ << row[2]
 << std::endl;
 }
}

std::pair<unsigned, unsigned> getMinMax(tntdb::Connection conn)
{
 tntdb::Row r = conn.selectRow(
 „select min(col1), max(col1) from table“);
 // we use implicit converters-operators here:
 return std::pair<unsigned, unsigned>(r[0], r[1]);
}

void someOtherFunc(tntdb::Connection conn)
{
 tntdb::Value v = conn.selectValue(„select count(*) from table“);
 std::cout << „The table 'table' has „ << v.getUnsigned()
 << „ rows“ << std::endl;
}

Prepared statements
Most of the time the user needs to parameterize the queries.

Because the query has the type std::string they can just be stringed together e.g. with
std::ostringstream. But this is not recommended normally. The disadvantage is, that the user has to
deal with special characters to avoid misinterpretation of data.

Prepared statements solve this by parsing the statement and getting the parameters spearately. This
also offers sometimes significant performance-advantages, because the user can execute the same
statement multiple times with different parameters. The parsing can be done either at the client-side
or at the serve-side. Tntdb let the driver decide, if the database can parse the query and which
placeholders the database needs.

To create a prepared statement tntdb::Connection has a method prepare, which takes a query as a
std::string and returns a object of type tntdb::Statement. The query can contain parameters.
Parameters are named tokens in the query prefixed with a colon. A token can occur multiple times
in a query. The Statement-class has setter-methods to pass parameter-values with different types.

tntdb::Statement offers the same methods for databaseaccess as tntdb::Connect: execute, select,
selectRow and selectValue. They work exactly like the methods in tntdb::Connect.

Example:

#include <tntdb/statement.h>

void insData(tntdb::Connection conn)
{

 tntdb::Statement st = conn.prepare(
 „insert into table values (:v1, :v2)“);

 st.setInt(„v1“, 1) // the setters return *this, so they can be
 // chained easily
 .setString(„v2“, „hi“)
 .execute();

 st.setInt(„v1“, 2)
 .setString(„v2“, „world“)
 .execute();
}

Working with cursors
Connections and prepared statements offer the method select(), which fetches the result and offers
random-access to the data. Databases has often more data, than would fit into the memory of the
program. To deal with this, the innovators of databases has created cursors. They are like pointers to
a window in a resultset, but without holding (and transfering) all data in memory. Tntdb offeres this
functionality with const_iterators in prepared statements. The class std::Statement::const_iterator
represents a database-cursor. It is a forward-only-iterator, which returns objects of type tntdb::Row,
when dereferenced.

The begin-method of tntdb::Statement starts a new iteration of a cursor.

Example

#include <tntdb/statement.h>

void printData(tntdb::Connection conn)
{
 tntdb::Statement st = conn.prepare(„select col1, col2 from table“);
 for (tntdb::Statement::const_iterator cur = st.begin();
 cur != st.end(); ++cur)
 {
 tntdb::Row row = *cur;
 std::cout << „col1=“ << row[0].getString() << „ col2=
 << row[1].getString() << std::endl;
 }
}

In the above example the memory-consumtion is low even when the table has millions of rows.
When the data would have been fetched with a tntdb::Result all rows has to fit into the main-
memory.

In contrast to many databases Tntdb allowes multiple concurrent iterations for a statement. This is
done by allocating a second cursor, when needed. Normally the cursor-handle is reused, when a
Statement is iterated multiple times.

Transactions
A database wouldn't be a database, if it does not offer transactions. tntdb::Connection has 3
methods to deal with it: beginTransaction, commitTransaction and rollbackTransaction. But this is
not the recommended way to deal with it. Tntdb has more to offer: tntdb::Transaction. This class
monitors the state of a transaction and closes the transaction automatically, when needed. This
offers excetion-safety without the danger of open transactions.

tntdb::Transaction are instantiated (just like all tntdb-user-classes) as local variables. The
constructor starts a transaction and the destructor rolls the transaction back, if the transaction is not

explicitely committed. This guarantees, that the transaction is never left open (except when the
rollback fails, but this normally happens only, when the connection is broken anyway and there is
no way to do any harm to the database any more).

Example:

#include <tntdb/transaction.h>

void doSomeModifications(tntdb::Connection conn)
{
 tntdb::Transaction trans(conn);
 // do some modifications in the database here:
 conn.execute(...);
 conn.prepare(„...“).setString(„col1“, value).execute();
 trans.commit();

} // no explicit rollback is needed. In case of an exception, the
 // transaction is rolled back automatically here

Connectionpool
In a long-running programm it is often desirable not to connect and disconnect for every access.
One solution is to keep a connection open somewhere and use is as needed. In a multithreaded
application the user has to make sure, that there is only one thread at a time accessing the database
through a single connection.

To solve this, Tntdb offerers a automatic connectionpool. When the call to tntdb::connect is
replaced with tntdb::connectCached a special connection is returned. This connection works just
like the normal connection (it is the same class), but when destroyed, it does not close the
connection, but puts the connection to a free pool. When tntdb::connectCached is called again with
the same parameter, the connection is reused. When the old connection is still in use,
connectCached just creates a new one.

Example:

std::string url = „mysql:db=mydb;host=192.168.0.1“;
tntdb::Connection conn;
conn = tntdb::connectCached(url); // connects to the db
conn = tntdb::Connection(); // puts the connection back to the pool
conn = tntdb::connectCached(url); // fetches the same connection
 // (if not already fetched by another thread)
tntdb::dropCached(); // closes all free connections, but not ours,
 // because it is hold by 'conn'
conn = tntdb::Connection();
tntdb::dropCached(); // closes the connection, because we released it

Statementcache
As told previously statement-reuse improves performance quite heavily. It is advisable to try to use
prepared statements where possible. In the case of a connectionpool it is quite difficult to maintain
prepared statements, because they are connectionspecific.

Tntdb helps here by putting a statementcache into the connection-class. When calls to
tntdb::Connection::prepare is replaced with tntdb::Connection::prepareCached, tntdb looks into
the connection, if the same statement is already prepared earlier and returns this when needed and
calls prepare and fills the statement-cache with this new statement otherwise.

	Introduction
	Connecting
	Execute query
	Selecting data
	Prepared statements
	Working with cursors
	Transactions
	Connectionpool
	Statementcache

